单选题n维向量组,α(→)1,α(→)2,…,α(→)s(3≤s≤n)线性无关的充要条件是(  )。A存在一组不全为0的数k1,k2,…,ks,使kα(→)1+k2α(→)2+…+ksα(→)s≠0(→)Bα(→)1,α(→)2,…,α(→)s中任意两个向量都线性无关Cα(→)1,α(→)2,…,α(→)s中存在一个向量不能由其余向量线性表示Dα(→)1,α(→)2,…,α(→)s中任何一个向量都不能由其余向量线性表示

单选题
n维向量组,α(→)1,α(→)2,…,α(→)s(3≤s≤n)线性无关的充要条件是(  )。
A

存在一组不全为0的数k1,k2,…,ks,使kα()1+k2α()2+…+ksα()s0()

B

α()1α()2,…,α()s中任意两个向量都线性无关

C

α()1α()2,…,α()s中存在一个向量不能由其余向量线性表示

D

α()1α()2,…,α()s中任何一个向量都不能由其余向量线性表示


参考解析

解析:
向量组线性相关的充要条件是其中至少有一个向量可以由其余向量表示,若向量组中任何一个向量都不能由其余向量线性表示,则它们必线性无关;反之亦然。

相关考题:

若a1,a2,……an是一个线性无关的n维向量组,则任何n维向量均可由它们线性表示。() 此题为判断题(对,错)。

设A为m×n矩阵,齐次线性方程组Ax=0仅有零解的充要条件是( )。A.A的列向量组线性无关B.A的列向量组线性相关C.A的行向量组线性无关D.A的行向量组线性相关

设A为s×n矩阵且A的行向量组线性无关,K为r×s矩阵。证明:B=KA行无关的充分必要条件是R(K)=r

设α1,α2,…,αn为n个线性无关的n维列向量,且与向量β正交.证明:向量β为零向量.

设向量组I:α1α2αr…,可由向量组Ⅱβ1,β2,…βs:线性表示,下列命题正确的是( )。A.若向量组I线性无关.则r≤SB.若向量组I线性相关,则r>sC.若向量组Ⅱ线性无关,则r≤sD.若向量组Ⅱ线性相关,则r>s

设α1,α2,α3,β是n维向量组,已知α1,α2,β线性相关,α2,α3,β线性无关,则下列结论中正确的是()。A、β必可用α1,α2线性表示B、α1必可用α2,α3,β线性表示C、α1,α2,α3必线性无关D、α1,α2,α3必线性相关

单选题设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是(  ).A向量组α1,α2,…,αm可以由β1,β2,…,βm线性表示B向量组β1,β2,…,βm可以由α1,α2,…,αm线性表示C向量组α1,…,αm与向量组β1,…,βm等价D矩阵A=(α1,…,αm)与矩阵B=(β1,…,βm)β)m

单选题向量组α(→)1,α(→)2,…,α(→)s线性无关的充分条件是(  )。Aα(→)1,α(→)2,…,α(→)s均不为零向量Bα(→)1,α(→)2,…,α(→)s中任意两个向量的分量不成比例Cα(→)1,α(→)2,…,α(→)s中任意一个向量均不能由其余s-1个向量线性表示Dα(→)1,α(→)2,…,α(→)s中有一部分向量线性无关

单选题n维向量组α(→)1,α(→)2,…,α(→)s线性无关的充分条件是(  )。Aα(→)1,α(→)2,…,α(→)s中没有零向量B向量组的个数不大于维数,即s≤nCα(→)1,α(→)2,…,α(→)s中任意两个向量的分量不成比例D某向量β(→)可由α(→)1,α(→)2,…,α(→)s线性表示,且表示法唯一

单选题n维向量α(→)1,α(→)2,…,α(→)s线性无关的充要条件是(  )。A存在不全为0的k1,k2,…,ks使klα(→)1+k2α(→)2+…+ksα(→)s≠0(→)B添加向量β(→)后,α(→)1,α(→)2,…,α(→)s,β(→)线性无关C去掉任一向量α(→)i后,α(→)1,α(→)2,…,α(→)i-1,α(→)i+1,…,α(→)s线性无关Dα(→)1,α(→)2-α(→)1,α(→)3-α(→)1,…,α(→)s-α(→)1线性无关

问答题在n维行向量组α(→)1,α(→)2,…,α(→)r(r≥2)中,α(→)r≠0,试证:对任意的k1,k2,kr-1,向量组β(→)1=α(→)1+k1α(→)r,β(→)2=α(→)2+k2α(→)r,…,β(→)r-1=α(→)r-1+kr-1α(→)r线性无关的充要条件是α(→)1,α(→)2,…,α(→)r线性无关。

单选题向量组α(→)1,α(→)2,…,α(→)s线性相关的充要条件是(  )。Aα(→)1,α(→)2,…,α(→)s均为零向量B其中有一个部分组线性相关Cα(→)1,α(→)2,…,α(→)s中任意一个向量都能由其余向量线性表示D其中至少有一个向量可以表为其余向量的线性组合

单选题设α1,α2,α3,β是n维向量组,已知α1,α2,β线性相关,α2,α3,β线性无关,则下列结论中正确的是(  )。[2012年真题]Aβ必可用α1,α2线性表示Bα1必可用α2,α3,β线性表示Cα1,α2,α3必线性无关Dα1,α2,α3必线性相关

单选题设n阶方阵A=(α(→)1,α(→)2,…,α(→)n),B=(β(→)1,β(→)2,…,β(→)n),AB=(γ(→)1,γ(→)2,…,γ(→)n),记向量组(Ⅰ):α(→)1,α(→)2,…,α(→)n;(Ⅱ): β(→)1,β(→)2,…,β(→)n;(Ⅲ):γ(→)1,γ(→)2,…,γ(→)n。如果向量组(Ⅲ)线性相关,则(  )。A向量组(Ⅰ)与(Ⅱ)都线性相关B向量组(Ⅰ)线性相关C向量组(Ⅱ)线性相关D向量组(Ⅰ)与(Ⅱ)中至少有一个线性相关

单选题下列说法不正确的是(  )。As个n维向量α(→)1,α(→)2,…,α(→)s线性无关,则加入k个n维向量β(→)1,β(→)2,…,β(→)k后的向量组仍然线性无关Bs个n维向量α(→)1,α(→)2,…,α(→)s线性无关,则每个向量增加k维分量后得到的向量组仍然线性无关Cs个n维向量α(→)1,α(→)2,…,α(→)s线性相关,则加入k个n维向量β(→)1,β(→)2,…,β(→)k后得到的向量组仍然线性相关Ds个n维向量α(→)1,α(→)2,…,α(→)s线性无关,则减少一个向量后得到的向量组仍然线性无关

问答题设向量组α(→)1,α(→)2,…,α(→)s的秩为r>0,证明:  (1)α(→)1,α(→)2,…,α(→)s中任意r个线性无关的向量都构成它的一个极大线性无关组;  (2)若α(→)1,α(→)2,…,α(→)s中每个向量都可由其中某r个向量线性表示,则这r个向量必为α(→)1,α(→)2,…,α(→)s的一个极大线性无关组。

单选题n维向量组,α(→)1,α(→)2,…,α(→)s(3≤s≤n)线性无关的充要条件是(  )。A存在一组不全为0的数k1,k2,…,ks,使kα(→)1+k2α(→)2+…+ksα(→)s≠0(→)Bα(→)1,α(→)2,…,α(→)s中任意两个向量都线性无关Cα(→)1,α(→)2,…,α(→)s中存在一个向量不能由其余向量线性表示Dα(→)1,α(→)2,…,α(→)s中任何一个向量都不能由其余向量线性表示

单选题设α1,α2,α3,β是n维向量组,已知α1,α2,β线性相关,α2,α3,β线性无关,则下列结论中正确的是()。Aβ必可用α1,α2线性表示Bα1必可用α2,α3,β线性表示Cα1,α2,α3必线性无关Dα1,α2,α3必线性相关

单选题设n维向量组(Ⅰ)α(→)1,α(→)2,…,α(→)s线性无关,(Ⅱ)β(→)1,β(→)2,…,β(→)t线性无关,且α(→)i不能由(Ⅱ)线性表示(i=1,2,…,s),且β(→)j不能由(Ⅰ)线性表示(j=1,2,…,t),则向量组α(→)1,α(→)2,…,α(→)s,β(→)1,β(→)2,…,β(→)t(  )。A一定线性相关B一定线性无关C可能线性相关,也可能线性无关D既不线性相关,也不线性无关

单选题设α(→)1,α(→)2,…,α(→)s和β(→)1,β(→)2,…,β(→)t为两个n维向量组,且秩(α(→)1,α(→)2,…,α(→)s)=秩(β(→)1,β(→)2,…,β(→)t)=r,则(  )。A此两个向量组等价B秩(α(→)1,α(→)2,…,α(→)s,β(→)1,β(→)2,…,β(→)t)=rC当α(→)1,α(→)2,…,α(→)s可以由β(→)1,β(→)2,…,β(→)t线性表示时,此二向量组等价Ds=t时,二向量组等价

单选题设n维列向量组α(→)1,α(→)2,…,α(→)m(m<n)线性无关,则n维列向量组β(→)1,β(→)2,…,β(→)m线性无关的充分必要条件是(  )。A向量组α(→)1,α(→)2,…,α(→)m可以由β(→)1,β(→)2,…,β(→)m线性表示B向量组β(→)1,β(→)2,…,β(→)m可以由α(→)1,α(→)2,…,α(→)m线性表示C向量组α(→)1,α(→)2,…,α(→)m与向量组β(→)1,β(→)2,…,β(→)m等价D矩阵A=(α(→)1,α(→)2,…,α(→)m)与矩阵B=(β(→)1,β(→)2,…,β(→)m)等价

单选题设α(→)1,α(→)2,…,α(→)s均为n维列向量,A是m×n矩阵,下列选项正确的是(  )。A若α(→)1,α(→)2,…,α(→)s线性相关,则Aα(→)1,Aα(→)2,…,Aα(→)s线性相关B若α(→)1,α(→)2,…,α(→)s线性相关,则Aα(→)1,Aα(→)2,…,Aα(→)s线性无关C若α(→)1,α(→)2,…,α(→)s线性无关,则Aα(→)1,Aα(→)2,…,Aα(→)s线性相关D若α(→)1,α(→)2,…,α(→)s线性无关,则Aα(→)1,Aα(→)2,…,Aα(→)s线性无关