任意n阶实称矩阵都存在n个线性无关的特征向量。()

任意n阶实称矩阵都存在n个线性无关的特征向量。()


相关考题:

可对角化的矩阵是____。 A.实对称阵B.有n个相异特征值的n阶阵C.有n个线性无关的特征向量的n阶方阵

任意n价实称矩阵都存在n个线性无关的特征向量。() 此题为判断题(对,错)。

若n阶矩阵A,B有共同的特征值,且各有n个线性无关的特征向量,则() A、A与B相似B、A≠B,但|A-B|=0C、A=BD、A与B不一定相似,但|A|=|B|

设A为n阶实对称矩阵,则(). A.A的n个特征向量两两正交B.A的n个特征向量组成单位正交向量组C.A的k重特征值λ0,有r(λ0E-A)=n-kD.A的k重特征值λ。,有r(λ0E-A)=k

设A为n阶方阵,则A可对角化的充分必要条件是( ).A. A有n个不同特征值B.A有n个不同特征向量C.A有n个线性元关的特征向量D.IAI≠0。

设A是n阶实对称矩阵,则A有n个()特征值.

n阶正交矩阵的乘积是()矩阵。 A、单位B、对称C、实D、正交

n*n矩阵可看作是n维空间中的线性变换,矩阵的特征向量经过线性变换后,只是乘以某个常数(特征值),因此,特征向量和特征值在应用中具有重要的作用。下面的矩阵(其中w1、w2、w3均为正整数)有特征向量(w1,w2,w3),其对应的特征值为( )。A.1/3B.1C.3D.9

设A为n阶正定矩阵,证明:对任意的可逆矩阵P,P^TAP为正定矩阵.

设2阶矩阵A有两个不同特征值,α1,α2是A的线性无关的特征向量,且满足A^2(α1+α2)=α1+α2,则|A|=________.

证明;对任意的n阶矩阵A,为对称矩阵,而为反对称矩阵.

设A为m X n矩阵,且r(A)=m小于n,则下列结论正确的是 AA的任意m阶子式都不等于零 BA的任意m个子向量线性无关 C方程组AX=b一定有无数个解 D矩阵A经过初等行变换化为

设A是nxm矩阵,B是mxn矩阵,E是n阶单位阵,若AB=E,证明B的列向量组线性无关。

设A为m×n阶矩阵,且r(A)=mAA的任意m个列向量都线性无关BA的任意m阶子式都不等于零C非齐次线性方程组AX=b一定有无穷多个解D矩阵A通过初等行变换一定可以化为

与n阶单位矩阵E相似的矩阵是A.B.对角矩阵D(主对角元素不为1)C.单位矩阵ED.任意n阶矩阵A

设A为n阶方阵,rank(A)=3A.任意3个行向量都是极大线性无关组B.至少有3个非零行向量C.必有4个行向量线性无关D.每个行向量可由其余n- 1个行向量线性表示

设A是n阶矩阵,且Ak=O(k为正整数),则( )。A.A一定是零矩阵B.A有不为0的特征值C.A的特征值全为0D.A有n个线性无关的特征向量

若n阶矩阵A,B有共同的特征值,且各有n个线性无关的特征向量,则( )A.A与B相似B.C.A=BD.A与B不一定相似,但|A|=|B|

设n阶矩阵A与对角矩阵相似,则().A.A的n个特征值都是单值B.A是可逆矩阵C.A存在n个线性无关的特征向量D.A一定为n阶实对称矩阵

设n阶方阵M的秩r(M)=rA.任意一个行向量均可由其他r个行向量线性表示B.任意r个行向量均可组成极大线性无关组C.任意r个行向量均线性无关D.必有r个行向量线性无关

设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是( )。A. α是矩阵-2A的属于特征值-2λ的特征向量D. α是矩阵AT的属于特征值λ的特征向量

A是n阶方阵,其秩r<n,则在A的n个行向量中( ).A.必有r个行向量线性无关B.任意r个行向量线性无关C.任意r个行向量都构成极大线性无关向量组D.任意一个行向量都可由其他任意r个行向量线性表出

设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是()。A、α是矩阵-2A的属于特征值-2λ的特征向量B、α是矩阵的属于特征值的特征向量C、α是矩阵A*的属于特征值的特征向量D、α是矩阵AT的属于特征值λ的特征向量

单选题设矩阵Am×n的秩r(A)=m<n,Em为m阶单位矩阵,下述结论正确的是(  )。AA的任意m个列向量必线性无关BA的任一个m阶子式不等于0C非齐次线性方程组AX(→)=b(→)一定有无穷多组解DA通过行初等变换可化为(Em,0)

问答题设n阶矩阵A有n个两两正交的特征向量,证明A是对称矩阵。

问答题设A是n阶矩阵,若存在正整数k,使线性方程组Akx(→)=0(→)有解向量α,且Ak-1α(→)≠0(→),证明:向量组α(→),Aα(→),…,Ak-1α(→)是线性无关的。

填空题设A为n阶方阵,若对任意n×m(m≥n)矩阵B都有AB=0,则A=____。