与n阶单位矩阵E相似的矩阵是A.B.对角矩阵D(主对角元素不为1)C.单位矩阵ED.任意n阶矩阵A

与n阶单位矩阵E相似的矩阵是

A.
B.对角矩阵D(主对角元素不为1)
C.单位矩阵E
D.任意n阶矩阵A


参考解析

解析:

相关考题:

n阶单位矩阵的特征值都是1。() 此题为判断题(对,错)。

设A为n阶对称矩阵,则A是正定矩阵的充分必要条件是( ). A.二次型xTAx的负惯性指数零B.存在n阶矩阵C,使得A=CTCC.A没有负特征值D.A与单位矩阵合同

设a为N阶可逆矩阵,则( ).A.若AB=CB,则a=C:B.C.A总可以经过初等变换化为单位矩阵E:D.以上都不对.

n阶方阵A,B,C满足ABC=E,其中E为单位矩阵,则必有( ).A.ACB=EB.CBA=EC.BAC=ED.BCA=E

与n阶单位矩阵E相似的矩阵是A.B.对角矩阵D(主对角元素不为1)C.单位矩阵ED.任意n阶矩阵A

设A,B,C均为n阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B-C=A.EB.-EC.AD.-A

设A是m×n矩阵,B是n×m矩阵,且AB=E,其中E为m阶单位矩阵,则( )A.r(A)=r(B)=mB.r(A)=m r(B)=nC.r(A)=n r(B)=mD.r(A)=r(B)=n

设a为N阶可逆矩阵,则( ).A.若AB=CB,则a=CB.C.A总可以经过初等变换化为单位矩阵ED.以上都不对

已知矩阵.,且矩阵X满足AXA+BXB=AXB+BXA+E,其中E是三阶单位矩阵,求X.

设n阶实对称矩阵A的秩为r,且满足,求 ①二次型的标准形; ②行列式的值,其中E为单位矩阵

设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵.其中A*是矩阵A的伴随矩阵,E是n阶单位矩阵. (1)计算并化简PQ; (2)证明:矩阵Q可逆的充分必要条件是.

设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则 A.A秩r(A)=m,秩r(B)=mB.秩r(A)=m,秩r(B)=nC.秩r(A)=n,秩r(B)=mD.秩r(A)=n,秩r(B)=n

设A为n阶非零矩阵,E为n阶单位矩阵,若A^3=O,则 A.AE-A不可逆,E+A不可逆B.E-A不可逆,E+A可逆C.E-A可逆,E+A可逆D.E-A可逆,E+A不可逆

设A为n阶非零矩阵,E为n阶单位矩阵。若A3=0,则( )。A.E-A不可逆,E+A不可逆B.E—A不可逆。E+A可逆C.E—A可逆。E+A可逆D.E—A可逆。E十A不可逆

设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则( ).《》( )A.r(A)=m,r(B)=mB.r(A)=m,r(B)=nC.r(A)=n,r(B)=mD.r(A)=n,r(B)=n

创建一个4阶魔术矩阵A与单位矩阵B,并分别计算两矩阵之和、矩阵相乘、矩阵点乘、A矩阵乘方、A矩阵装置。

可以产生由Z2上n阶线性常系数齐次递推关系式的矩阵A称为什么?()A、乘方矩阵B、列矩阵C、单位矩阵D、生成矩阵

问答题创建一个4阶魔术矩阵A与单位矩阵B,并分别计算两矩阵之和、矩阵相乘、矩阵点乘、A矩阵乘方、A矩阵装置。

填空题设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=____。

单选题设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则(  )。Ar(A)=m,r(B)=mBr(A)=m,r(B)=nCr(A)=n,r(B)=mDr(A)=n,r(B)=n

单选题设n维行向量α=(1/2,0,…,0,1/2),矩阵A=E-αTα,B=E+2αTα,其中E为n阶单位矩阵,则AB等于(  )。AOB-ECEDE+αTα

问答题设A是n阶矩阵,且满足Am=E,其中m为整数,E为n阶单位矩阵。令将A中的元素aij换成它的代数余子式Aij而成的矩阵为A(~),证明:(A(~))m=E。

单选题设A为n阶方阵,E为n阶单位矩阵,且A2=A,则(A-2E)-1=(  )。A(A+E)/2B-(A+E)/2C(A-E)/2D-(A-E)/2

填空题设A为n阶方阵,E为n阶单位矩阵,且A2=A,则(A-2E)-1=____。

问答题设A=E-α(→)α(→)T,其中E是n阶单位矩阵,α(→)是n维非零列向量,α(→)T是α(→)的转置。证明:  (1)A2=A的充要条件是α(→)Tα(→)=1;  (2)当α(→)Tα(→)=1时,A是不可逆矩阵。

单选题设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=(  )。A4B2C-1D1

单选题可以产生由Z2上n阶线性常系数齐次递推关系式的矩阵A称为什么?()A乘方矩阵B列矩阵C单位矩阵D生成矩阵

单选题设A为n阶方阵,E为n阶单位矩阵,且A2=A,则(A-2E)-1=(  )。AA+2EBA+EC(A+E)/2D-(A+E)/2