函数z=xy2+y(lny-1)在x=1,y=1处的全微分dz等于().A、dx+dyB、dx-dyC、dx+2dyD、dx-2dy
函数z=xy2+y(lny-1)在x=1,y=1处的全微分dz等于().
- A、dx+dy
- B、dx-dy
- C、dx+2dy
- D、dx-2dy
相关考题:
对于二元函数z=f(x,y),下列有关偏导数与全微分关系中正确的命题是()。A、偏导数存在,则全微分存在B、偏导数连续,则全微分必存在C、全微分存在,则偏导数必连续D、全微分存在,而偏导数不一定存在
单选题设函数f(u)可微,且f′(0)=1/2,则z=f(4x2-y2)在点(1,2)处的全微分dz|(1,2)=( )。A4dx+2dyB4dx-2dyC-4dx+2dyD-4dx-2dy
单选题设方程x2+y2+z2=4z确定可微函数z=z(x,y),则全微分dz等于( )。[2014年真题]A(ydx+xdy)/(2-z)B(xdx+ydy)/(2-z)C(dx+dy)/(2+z)D(dx-dy)/(2-z)
单选题设z=z(x,y)是由方程xz-xy+ln(xyz)=0所确定的可微函数,则∂z/∂y等于( )。[2013年真题]A-xz/(xz+1)B-x+1/2Cz(-xz+y)/[x(xz+1)]Dz(xy-1)/[y(xz+1)]
单选题设三元函数xy-zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程( )。A只能确定一个具有连续偏导数的隐函数z=z(x,y)B可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)C可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)D可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)
单选题对于二元函数z=f(x,y),下列有关偏导数与全微分关系中正确的命题是()。A偏导数存在,则全微分存在B偏导数连续,则全微分必存在C全微分存在,则偏导数必连续D全微分存在,而偏导数不一定存在
单选题设函数z=f(x,y)的全微分为dz=xdx+ydy,则点(0,0)( )。A不是f(x,y)的连续点B不是f(x,y)的极值点C是f(x,y)的极大值点D是f(x,y)的极小值点