单选题设三元函数xy-zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程( )。A只能确定一个具有连续偏导数的隐函数z=z(x,y)B可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)C可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)D可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)
单选题
设三元函数xy-zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程( )。
A
只能确定一个具有连续偏导数的隐函数z=z(x,y)
B
可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)
C
可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)
D
可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)
参考解析
解析:
构造函数F(x,y,z)=xy-zlny+exz-1,则Fx′=y+zexz,Fy′=x-(z/y),Fz′=-lny+xexz。Fx′(0,1,1)=2≠0,Fy′(0,1,1)=-1≠0,Fz′(0,1,1)=0。
故根据隐函数的存在定理可知,方程xy-zlny+exz=1能确定x是y、z的具有连续偏导数的函数x=x(y,z);y是x、z的具有连续偏导数的函数y=y(x,z)。因为Fz′(0,1,1)=0不能满足定理成立的条件,故不能确定z是x、y的具有连续偏导数的隐函数z=z(x,y)。
构造函数F(x,y,z)=xy-zlny+exz-1,则Fx′=y+zexz,Fy′=x-(z/y),Fz′=-lny+xexz。Fx′(0,1,1)=2≠0,Fy′(0,1,1)=-1≠0,Fz′(0,1,1)=0。
故根据隐函数的存在定理可知,方程xy-zlny+exz=1能确定x是y、z的具有连续偏导数的函数x=x(y,z);y是x、z的具有连续偏导数的函数y=y(x,z)。因为Fz′(0,1,1)=0不能满足定理成立的条件,故不能确定z是x、y的具有连续偏导数的隐函数z=z(x,y)。
相关考题:
下列关于部分函数依赖的叙述中,哪一条是正确的?A.若X→Y,且存在属性集Z,Z∩Y≠?,X→Z,则称Y对X部分函数依赖B.若X→Y,且存在属性集Z,Z∩Y=?,X→Z,则称Y对X部分函数依赖C.若X→Y,且存在X的真子集X'Z,X'→Z,则称Y对X部分函数依赖D.若X→Y,且对于X的任何真子集X',都有X' ?Y,则称Y对X部分函数依赖
A.只能确定一个具有连续偏导数的隐函数z=z(x,y)B.可确定两个具有连续偏导数的隐函数y=y(x,y)和z=z(x,y)C.可确定两个具有连续偏导数的隐函数x=x(x,y)和z=z(x,y)D.可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)
下列结论正确的是( ).A.x=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点连续的充分条件B.z=f(x,y)在点(x,y)连续是f(x,y)的偏导数存在的必要条件C.z=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点可微分的充分条件D.z=(x,y)在点(x,y)连续是f(x,y)在该点可微分的必要条件
设有三元方程 ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程A.只能确定一个具有连续偏导数的隐函数z=z(x,y)B.可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)C.可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)D.可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)
下列结论正确的是().A、x=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点连续的充分条件B、z=f(x,y)在点(x,y)连续是f(x,y)的偏导数存在的必要条件C、z=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点可微分的充分条件D、z=(x,y)在点(x,y)连续是f(x,y)在该点可微分的必要条件
下列结论正确的是().A、z=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点连续的充分条件B、z=f(x,y)在点(x,y)连续是f(x,y)的偏导数存在的必要条件C、z=(x,y)在点(x,y)的偏导数存在是f(x,y)在该点可微分的充分条件D、z=(x,y)在点(x,y)连续是f(x,y)在该点可微分的必要条件
单选题设z=φ(x2-y2),其中φ有连续导数,则函数z满足( )。Ax∂z/∂x+y∂z/∂y=0Bx∂z/∂x-y∂z/∂y=0Cy∂z/∂x+x∂z/∂y=0Dy∂z/∂x-x∂z/∂y=0
问答题若函数f(x,y,z)恒满足关系式f(tx,ty,tz)=tkf(x,y,z)就称为k次齐次函数,验证k次齐次函数满足关系式(其中f存在一阶连续偏导数)x∂f/∂x+y∂f/∂y+z∂f/∂z=kf(x,y,z)。
单选题设三元函数xy-zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程( )。A只能确定一个具有连续偏导数的隐函数z=z(x,y)B可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)C可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)D可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)
填空题设z=f(x,xy)二阶偏导数连续,则∂2z/∂x∂y=____。