单选题函数y=C1ex+C2e-2x+xex满足的一个微分方程是( )。Ay″-y′-2y=3xexBy″-y′-2y=3exCy″+y′-2y=3xexDy″+y′-2y=3ex
单选题
函数y=C1ex+C2e-2x+xex满足的一个微分方程是( )。
A
y″-y′-2y=3xex
B
y″-y′-2y=3ex
C
y″+y′-2y=3xex
D
y″+y′-2y=3ex
参考解析
解析:
y=C1ex+C2e-2x+xex是某二阶线性常系数非齐次方程的通解,相应的齐次方程的特征根λ1=1,λ2=-2,特征方程应是(λ-1)(λ+2)=0,于是相应的齐次方程是y″+y′-2y=0。CD两项中,将xex代入,知D项满足题意。
相关考题:
在下列微分方程中,以函数y=C1e^-x+C2e^4x(C1,C2为任意常数)为通解的微分方程是( )。A. y″+3y′-4y=0 B. y″-3y′-4y=0 C. y″+3y′+4y=0 D. y″+y′-4y=0
设y=f(x)是微分方程y-2y+4y=0的一个解,又f(xo)>0,f(xo)=0,则函数f(x)在点xo( ).A.取得极大值B.取得极小值C.的某个邻域内单调增加D.的某个邻域内单调减少
单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为( )。Af″(x)+f(x)=0Bf′(x)+f(x)=0Cf″(x)+f′(x)=0Df″(x)+f′(x)+f(x)=0
单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为( )。Af′(x)+f(x)=0Bf′(x)-f(x)=0Cf″(x)+f(x)=0Df″(x)-f(x)=0