向量组α1,α2,…,αm(m≥2)线性相关的充要条件是( )。A、α1,α2,…,αm中至少有一个零向量B、α1,α2,…,αm中至少有两个向量成比例C、存在不全为零的常数k1,k2,…,km,使k1α1+k2α2+…+kmαm=0D、α1,α2,…,αm中每个向量都能由其余向量线性表示
向量组α1,α2,…,αm(m≥2)线性相关的充要条件是( )。
A、α1,α2,…,αm中至少有一个零向量
B、α1,α2,…,αm中至少有两个向量成比例
C、存在不全为零的常数k1,k2,…,km,使k1α1+k2α2+…+kmαm=0
D、α1,α2,…,αm中每个向量都能由其余向量线性表示
B、α1,α2,…,αm中至少有两个向量成比例
C、存在不全为零的常数k1,k2,…,km,使k1α1+k2α2+…+kmαm=0
D、α1,α2,…,αm中每个向量都能由其余向量线性表示
参考解析
解析:由向量组线性相关的理论,(A)、(B)、(D)不正确,而(C)是线性相关的定义,也是充分必要条件
相关考题:
设A为m×n阶矩阵,则齐次线性方程组AX=0只有零解的充分必要条件是(64)。A.A的列向量组线性无关B.A的列向量组线性相关C.A的行向量组线性无关D.A的行向量组线性相关A.A的列向量组线性无关B.A的列向量组线性相关C.A的行向量组线性无关D.A的行向量组线性相关
设向量组I:α1,α2,αr可由向量组Ⅱ:β1,β2,βs,线性表示,则(53)。A.当r<s时,向量组Ⅱ必线性相关.B.当r<s时,向量组Ⅱ必线性相关.C.当r<s时,向量组Ⅰ必线性相关.D.当r<s时,向量组Ⅰ必线性相关.
向量组α1,α2,…,αm(m≥2)线性相关的充要条件是( )。A α1,α2,…,αm中至少有一个零向量B α1,α2,…,αm中至少有两个向量成比例C 存在不全为零的常数k1,k2,…,km,使k1α1+k2α2+…+kmαm=0D α1,α2,…,αm中每个向量都能由其余向量线性表示
设向量组I:α1α2αr…,可由向量组Ⅱβ1,β2,…βs:线性表示,下列命题正确的是( )。A.若向量组I线性无关.则r≤SB.若向量组I线性相关,则r>sC.若向量组Ⅱ线性无关,则r≤sD.若向量组Ⅱ线性相关,则r>s
m+n-1个变量构成一组基变量的充要条件是()A、m+n-1个变量恰好构成一个闭回路B、m+n-1个变量不包含任何闭回路C、m+n-1个变量中部分变量构成一个闭回路D、m+n-1个变量对应的系数列向量线性相关
3维向量组A:α1,α2,…,αM线性无关的充分必要条件是().A、对任意一组不全为0的数k1,k2,…,kM,都有后B、向量组A中任意两个向量都线性无关C、向量组A是正交向量组D、αM不能由线性表示
单选题设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是( ).A向量组α1,α2,…,αm可以由β1,β2,…,βm线性表示B向量组β1,β2,…,βm可以由α1,α2,…,αm线性表示C向量组α1,…,αm与向量组β1,…,βm等价D矩阵A=(α1,…,αm)与矩阵B=(β1,…,βm)β)m
单选题设向量β(→)可由向量组α(→)1,α(→)2,…,α(→)m线性表示,但不能由向量组(Ⅰ):α(→)1,α(→)2,…,α(→)m-1线性表示。记向量组(Ⅱ):α(→)1,α(→)2,…,α(→)m-1,β(→),则( )。Aα(→)m不能由(Ⅰ)线性表示,也不能由(Ⅱ)线性表示Bα(→)m不能由(Ⅰ)线性表示,但可由(Ⅱ)线性表示Cα(→)m可由(Ⅰ)线性表示,也可由(Ⅱ)线性表示Dα(→)m可由(Ⅰ)线性表示,但不可由(Ⅱ)线性表示
单选题设向量组Ⅰ:α(→)1,α(→)2,…,α(→)m,其秩为r;向量组Ⅱ:α(→)1,α(→)2,…, α(→)m,β(→),其秩为s,则r=s是向量组Ⅰ与向量组Ⅱ等价的( )。A充分非必要条件B必要非充分条件C充分必要条件D既非充分也非必要条件
单选题设向量β可以由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1线性表示,记向量组(Ⅱ):α1,α2,…,αm-1,β,则( ).Aαm不能由(Ⅰ)线性表示,也不能由(Ⅱ)线性表示Bαm不能由(Ⅰ)线性表示,但可由(Ⅱ)线性表示Cαm可以由(Ⅰ)线性表示,也可由(Ⅱ)线性表示Dαm可由(Ⅰ)线性表示,不可由(Ⅱ)线性表示
单选题向量组α(→)1,α(→)2,…,α(→)s线性相关的充要条件是( )。Aα(→)1,α(→)2,…,α(→)s均为零向量B其中有一个部分组线性相关Cα(→)1,α(→)2,…,α(→)s中任意一个向量都能由其余向量线性表示D其中至少有一个向量可以表为其余向量的线性组合
单选题设向量组(Ⅰ):α1,α2,…,αr可由向量组(Ⅱ):β1,β2,…,βs线性表示,则( ).Ar<s时,向量组(Ⅱ)必线性相关Br>s时,向量组(Ⅱ)必线性相关Cr<s时,向量组(Ⅰ)必线性相关Dr>s时,向量组(Ⅰ)必线性相关
单选题设向量组I:α(→)1,α(→)2,…,α(→)m,其秩为r;向量组II:α(→)1,α(→)2,…,α(→)m,β(→),其秩为s,则r=s是向量组I与向量组II等价的( )。A充分非必要条件B必要非充分条件C充分必要条件D既非充分也非必要条件
单选题设n阶方阵A=(α(→)1,α(→)2,…,α(→)n),B=(β(→)1,β(→)2,…,β(→)n),AB=(γ(→)1,γ(→)2,…,γ(→)n),记向量组(Ⅰ):α(→)1,α(→)2,…,α(→)n;(Ⅱ): β(→)1,β(→)2,…,β(→)n;(Ⅲ):γ(→)1,γ(→)2,…,γ(→)n。如果向量组(Ⅲ)线性相关,则( )。A向量组(Ⅰ)与(Ⅱ)都线性相关B向量组(Ⅰ)线性相关C向量组(Ⅱ)线性相关D向量组(Ⅰ)与(Ⅱ)中至少有一个线性相关
单选题下列说法不正确的是( )。As个n维向量α(→)1,α(→)2,…,α(→)s线性无关,则加入k个n维向量β(→)1,β(→)2,…,β(→)k后的向量组仍然线性无关Bs个n维向量α(→)1,α(→)2,…,α(→)s线性无关,则每个向量增加k维分量后得到的向量组仍然线性无关Cs个n维向量α(→)1,α(→)2,…,α(→)s线性相关,则加入k个n维向量β(→)1,β(→)2,…,β(→)k后得到的向量组仍然线性相关Ds个n维向量α(→)1,α(→)2,…,α(→)s线性无关,则减少一个向量后得到的向量组仍然线性无关
单选题已知向量组(α(→)1,α(→)3),(α(→)1,α(→)3,α(→)4),(α(→)2,α(→)3)都线性无关,而(α(→)1,α(→)2,α(→)3,α(→)4)线性相关,则向量组(α(→)1,α(→)2,α(→)3,α(→)4)的极大无关组是( )。A(α(→)1,α(→)2,α(→)3)B(α(→)1,α(→)2,α(→)4)C(α(→)1,α(→)3,α(→)4)D(α(→)2,α(→)3,α(→)4)
单选题设n维列向量组α(→)1,α(→)2,…,α(→)m(m<n)线性无关,则n维列向量组β(→)1,β(→)2,…,β(→)m线性无关的充分必要条件是( )。A向量组α(→)1,α(→)2,…,α(→)m可以由β(→)1,β(→)2,…,β(→)m线性表示B向量组β(→)1,β(→)2,…,β(→)m可以由α(→)1,α(→)2,…,α(→)m线性表示C向量组α(→)1,α(→)2,…,α(→)m与向量组β(→)1,β(→)2,…,β(→)m等价D矩阵A=(α(→)1,α(→)2,…,α(→)m)与矩阵B=(β(→)1,β(→)2,…,β(→)m)等价
单选题设α(→)1,α(→)2,…,α(→)s均为n维列向量,A是m×n矩阵,下列选项正确的是( )。A若α(→)1,α(→)2,…,α(→)s线性相关,则Aα(→)1,Aα(→)2,…,Aα(→)s线性相关B若α(→)1,α(→)2,…,α(→)s线性相关,则Aα(→)1,Aα(→)2,…,Aα(→)s线性无关C若α(→)1,α(→)2,…,α(→)s线性无关,则Aα(→)1,Aα(→)2,…,Aα(→)s线性相关D若α(→)1,α(→)2,…,α(→)s线性无关,则Aα(→)1,Aα(→)2,…,Aα(→)s线性无关