光滑函数f(χ)的图象如图所示,下列关系式正确的是( )。

光滑函数f(χ)的图象如图所示,下列关系式正确的是( )。


参考解析

解析:

相关考题:

下列关于U、 H、 S、 F 、G 五个函数之间的关系式错误的是( )A H=U+pVB F=U+TSC G=H-TSD G=F+pV

求下列象函数的原函数f(t)。

作出函数y=3-2x的图象,根据图象回答下列问题:(1)y的值随着x值增大而__________;(2)图象与x轴的交点坐标是_________________,与y轴的交点坐标是_______________;(3)当x__________时,y>0 。

已知函数 y=x²-4x+3。(1)画出函数的图象;(2)观察图象,当x取哪些值时,函数值为0?

已知函数f(x)=a2+k的图象经过点(1,7),且其反函数f-1(x)的图像经过点(4,0),则函数f(x)的表达式是 ( )A.f(x)=4x+3B.f(x)=2x+5C.f(x)=5x+2D.f(x)=3x+5

设f(x)有连续导数,则下列关系式中正确的是:

A.常数k<-1B.函数f(x)在定义域范围内,y随着x的增大而减小C.若点C(-1,m),点B(2,n),在函数f(x)的图象上,则m<nD.函数f(x)图象对称轴的直线方程是y=x

函数f(x)=2sin3x的图象按向量a平移后得到的图象与g(x)=2cos3x的图象重合,则向量a可以是A.(-π/2,0)B.(π/2,0)C.(-π/6,0)D.(π/6,0)

下图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,-4). (1)求出图象与戈轴的交点A,B的坐标; 存在,请说明理由; ° (3)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线y=x+b(b<1)与此图象有两个公共点时,b的取值范围.

关于反比例函数y=2/x,下列说法不正确的是()。,A.点(-2,-1)在它的图象上B.它的图象在第一、三象限C.当x>0时,y随x增大而增大D.当x

定义[a,b,c]为函数y=ax2+bc+c的特征数,下面给出特征数为[ 2m ,1-m,-1-m]的函数的一些结论: ①当m=-3时,函数图象的顶点坐标是{1/3,-(8/3)}; ②当m>0时,函数图象截石轴所得的线段长度大于3/2; ③当m1/4时,y随x的增大而减小; ④当m≠0时,函数图象经过同一个点。 其中正确的结论有()。A.②③④B.①②④C.③④D.②④

如图所示,下列选项中,弯矩图正确的是(  )。

已知象函数F(s)求解原函数f(t)的过程称为拉氏变换。( )

下列函数图象与y=f(x)的图象关于原点对称的是(  )A.y=-f(x) B.y=f(-x)C.y=-f(-x)D.y=|f(x)|

设χ=α是代数方程f(χ)=0的根,则下列结论不正确的是( )。A、χ-α是f(χ)的因式B、χ-α整除f(χ)C、(α,0)是函数y=f(χ)的图象与χ轴的交点D、f′(α)=O

函数y(x)的导函数f(x)的图象如图所示,Xo=-1,则( )A、X。不是驻点B、x。是驻点,但不是极值点C、x。是极小值点D、 X。极大值点

如下图所示,设00,f(a)=f(b)。设f为绕原点0可转动的细棍(射线),放手后落在函数f(x)的图象上并支撑在点从直观上看.证明函数并由此证明(★)式。

设x=a是代数方程f(x)=0的根,则下列结论不正确的是( )。A、 叫是f(x)的因式B、X-a整除f(x)C、(a,0)是函数y=f(x)的图象与2轴的交点D、 f(a)=0

某教师关于“反比例函数图象”教学过程中的三个步骤为:第一步:复习回顾提出问题:我们已经学过一次函数的哪些内容?是如何研究的?第二步:引入新课。提出问题:反比例函数的图形是什么形状呢?引导学生利用描点法画出y=1/x的图象。列表:描点:连线:引导学生用光滑的曲线连接描点,并用计算机演示图象的生成过程。在此过程中启发学生思考,由于x,y都不能为0,所以函数图象与x轴、y轴不能有交点(如下图)……(第三步过程省略)(1)该教学过程的主要特点是什么?(2)在第二步的连线过程中,如果你是该老师,如何引导学生思考所连的线不是直线,而是光滑曲线(3)对于第三步的③,如果你是该老师,如何引导学生思考函数图象在第一象限(或第三象限)的变化?

关于二次函数y=2-(x+1)2的图象,下列说法正确的是( )。A.图象开口向上B.图象的对称轴为直线x=1C.图象有最低点D.图象的顶点坐标(-1,2)

已知 的部分图象如图所示,则y=f(x)的图象向右平移个单位后得到的图象解析式为( )。

若函数f(x)的图象上点P(1,m)处的切线方程为3x-y+b=0,则m的值为__________。

已知函数f(x)=x2+4lnx. (1)求函数f(x)在[1,e]上的最大值和最小值; (2)证明:当x∈[1,+∞)时,函数八戈)的图象在g(x)=2x3的图象的下方。

设f(x)是R上的函数,则下列叙述正确的是()。A、f(x)f(-x)是奇函数B、f(x)|f(x)|是奇函数C、f(x)-f(-x)是偶函数D、f(x)+f(-x)是偶函数

填空题函数f(u,v)由关系式f[xg(y),y]=x+g(y)确定,其中函数g(y)可微,且g(y)≠0,则∂2f/∂u∂v=____。

问答题若函数f(x,y,z)恒满足关系式f(tx,ty,tz)=tkf(x,y,z)就称为k次齐次函数,验证k次齐次函数满足关系式(其中f存在一阶连续偏导数)x∂f/∂x+y∂f/∂y+z∂f/∂z=kf(x,y,z)。

单选题设f(x)是R上的函数,则下列叙述正确的是()。Af(x)f(-x)是奇函数Bf(x)|f(x)|是奇函数Cf(x)-f(-x)是偶函数Df(x)+f(-x)是偶函数