单选题设4/(1-x2)·f(x)=d/dx[f(x)]2,且f(0)=0,则f(x)等于:()A(1+x)/(1-x)+cB(1-x)/(1+x)+cC1n|(1+x)/(1-x)|+cD1n|(1-x)/(1+x)|+c
单选题
设4/(1-x2)·f(x)=d/dx[f(x)]2,且f(0)=0,则f(x)等于:()
A
(1+x)/(1-x)+c
B
(1-x)/(1+x)+c
C
1n|(1+x)/(1-x)|+c
D
1n|(1-x)/(1+x)|+c
参考解析
解析:
计算等号右边式子,得到f′(x)表达式。计算不定积分。
相关考题:
设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )A.f(a)=0且f′(a)=0B.f(a)=0且f′(a)≠0C.f(a)>0且f′(a)>D.f(a)<0且f′(a)<
设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0, f''(x)>0,则在(-∞,0)内必有:A. f'(x)>0, f''(x)>0 B.f'(x)<0, f''(x)>0C. f'(x)>0, f''(x)<0 D. f'(x)<0, f''(x)<0
设4/(1-x2)·f(x)=d/dx[f(x)]2,且f(0)=0,则f(x)等于:()A、(1+x)/(1-x)+cB、(1-x)/(1+x)+cC、1n|(1+x)/(1-x)|+cD、1n|(1-x)/(1+x)|+c
设f(x)的二阶导数存在,且f′(x)=f(1-x),则下列式中何式可成立()?A、f″(x)+f′(x)=0B、f″(x)-f′(x)=0C、f″(x)+f(x)=0D、f″(x)-f(x)=0
设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)0,f"(x)0,则在(-∞,0)内必有()。A、f'(x)0,f"(x)0B、f'(x)0,f"(x)0C、f'(x)O,f"(x)0D、f'(x)0,f"(x)0
单选题设函数f(x)满足关系式f″(x)+[f′(x)]2=x,且f′(0)=0,则( )。Af(0)是f(x)的极大值Bf(0)是f(x)的极小值C点(0,f(0))是曲线y=f(x)的拐点Df(0)不是f(x)的极值,点(0,f(0))也不是曲线y=f(x)的拐点
单选题(2008)设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f′(x)0,f″(x)0则在(-∞,0)内必有:()Af′(x)0,f″(x)0Bf′(x)0,f″(x)0Cf′(x)0,f″(x)0Df′(x)0,f″(x)0
单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为( )。Af″(x)+f(x)=0Bf′(x)+f(x)=0Cf″(x)+f′(x)=0Df″(x)+f′(x)+f(x)=0
单选题设f(x)g(x)在x0处可导,且f(x0)=g(x0)=0,f′(x0)g′(x0)>0,f″(x0)、g″(x0)存在,则( )Ax0不是f(x)g(x)的驻点Bx0是f(x)g(x)的驻点,但不是它的极值点Cx0是f(x)g(x)的驻点,且是它的极小值点Dx0是f(x)g(x)的驻点,且是它的极大值点
单选题设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=( )。A1/5B1/7C-1/7D-1/5
单选题设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=( )。A1B-1C1/7D-1/7
单选题设sinx/x为f(x)的一个原函数,且a≠0则∫[f(ax)/a]dx等于( )。Asinax/(a3x)+CBsinax/(a2x)+CCsinax/(ax)+CDsinax/x+C
单选题若∫f(x)dx=F(x)+C,则∫xf(1-x2)dx=( )。[2018年真题]AF(1-x2)+CB(-1/2)F(1-x2)+CC(1/2)F(1-x2)+CD(-1/2)F(x)+C
单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为( )。Af′(x)+f(x)=0Bf′(x)-f(x)=0Cf″(x)+f(x)=0Df″(x)-f(x)=0
单选题设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=( )。A-1/2B-1/4C-1/7D-1/9