3、求方阵A的特征值和特征向量应使用的语句是A.Eigensystem[A]B.EigenSystem[A]C.Eigenvalues[A]D.EigenVectors[A]

3、求方阵A的特征值和特征向量应使用的语句是

A.Eigensystem[A]

B.EigenSystem[A]

C.Eigenvalues[A]

D.EigenVectors[A]


参考答案和解析
Eigensystem[A]

相关考题:

若方阵A与B相似,则它们____。 A.有相同的特征值B.有相同的特征向量C.有两两正交的特征向量

逆幂法是求实方阵按模最小的特征值与特征向量的反迭代法。()

设A为n阶方阵,则A可对角化的充分必要条件是( ).A. A有n个不同特征值B.A有n个不同特征向量C.A有n个线性元关的特征向量D.IAI≠0。

阐述方阵的特征值和特征向量的定义。

A.β是A的属于特征值0的特征向量B.α是A的属于特征值0的特征向量C.β是A的属于特征值3的特征向量D.α是A的属于特征值3的特征向量

A.β是A的属于特征值0的特征向量B.α是A的属于特征值0的特征向量C.β是A的属于特征值2的特征向量D.α是A的属于特征值2的特征向量

已知三维列向量αβ满足αTβ=3,设3阶矩阵A=βαT,则:A. β是A的属于特征值0的特征向量B. α是A的属于特征值0的特征向量C. β是A的属于特征值3的特征向量D. α是A的属于特征值3的特征向量

设A是3阶方阵,A能与对角阵相似的充分必要条件是( ).A.B.A是实对称阵C.A有3个线性无关的特征向量D.A有3个不同的特征值

设3阶实对称矩阵A的特征值为-1,1,1,与特征值-1对应的特征向量x=(-1,1,1)′,求A

设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,  对应特征向量为(-1,0,1)^T.  (1)求A的其他特征值与特征向量;  (2)求A.

设3阶实对称矩阵A的各行元素之和都为3,向量都是齐次线性方程组AX=0的解.① 求A的特征值和特征向量.② 求作正交矩阵Q和对角矩阵

设实对称阵A的特征值为0,2,2,且对应特征值2的两个特征向量为与,求.

设A是三阶实对称矩阵,r(A)=1,A^2-3A=O,设(1,1,-1)t为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A.

设3阶对称阵A的特征值为;对应的特征向量依次为 ,求A

设A是n阶矩阵,λ是A的特征值,其对应的特征向量为X,证明:λ^2是λ^3的特征值,X为特征向量,若A^2有特征值λ,其对应的特征向量为X,X是否一定为A的特征向量?说明理由.

设为n阶方阵A的两个互不相等的特征值,与之对应的特征向量分别为X1,X2,证明X1,X2不是矩阵A的特征向量。

设二维非零向量α不是二阶方阵A的特征向量.  (1)证明α,Aα线性无关;  (2)若Aα^2+Aα-6α=0,求A的特征值,讨论A可否对角化;

设A为三阶实对称矩阵,A的秩为2,且  (Ⅰ)求A的所有特征值与特征向量;  (Ⅱ)求矩阵A.

设A为3阶实对称矩阵,A的秩为2,且. (Ⅰ)求A的特征值与特征向量; (Ⅱ)求矩阵A

已知三维列向量a,β满足aTβ,设3阶矩阵A=βaT,则:A. β是A的属于特征值0的特征向量B. a是A的属于特征值0的特征向量C. β是A的属于特征值3的特征向量D. a是A的属于特征值3的特征向量

设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是()。A、α是矩阵-2A的属于特征值-2λ的特征向量B、α是矩阵的属于特征值的特征向量C、α是矩阵A*的属于特征值的特征向量D、α是矩阵AT的属于特征值λ的特征向量

已知3维列向量α,β满足αTβ=3,设3阶矩阵A=βαT,则()。A、β是A的属于特征值0的特征向量B、α是A的属于特征值0的特征向量C、β是A的属于特征值3的特征向量D、α是A的属于特征值3的特征向量

设列向量p=[1,-1,2]T是3阶方阵相应特征值λ的特征向量,则特征值λ等于().A、3B、5C、7D、不能确定

单选题设A是三阶矩阵,α1=(1,0,1)T,α2=(1,1,0)T是A的属于特征值1的特征向量,α3=(0,1,2)T是A的属于特征值-1的特征向量,则:()Aα1-α2是A的属于特征值1的特征向量Bα1-α3是A的属于特征值1的特征向量Cα1-α3是A的属于特征值2的特征向量Dα1+α2+α3是A的属于特征值1的特征向量

单选题设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是()。Aα是矩阵-2A的属于特征值-2λ的特征向量Bα是矩阵的属于特征值的特征向量Cα是矩阵A*的属于特征值的特征向量Dα是矩阵AT的属于特征值λ的特征向量

单选题已知3维列向量α,β满足αTβ=3,设3阶矩阵A=βαT,则()。Aβ是A的属于特征值0的特征向量Bα是A的属于特征值0的特征向量Cβ是A的属于特征值3的特征向量Dα是A的属于特征值3的特征向量

问答题设有三个非零的n阶(n≥3)方阵A1、A2、A3,满足Ai2=Ai(i=1,2,3),且AiAj=0(i≠j,i、j=1,2,3),证明:  (1)Ai(i=1,2,3)的特征值有且仅有0和1;  (2)Ai的对应于特征值1的特征向量是Aj的对应于特征值0的特征向量(i≠j);  (3)若α(→)1、α(→)2、α(→)3分别为A1、A2、A3的对应于特征值1的特征向量,则向量组α(→)1、α(→)2、α(→)3线性无关。

单选题设列向量p=[1,-1,2]T是3阶方阵相应特征值λ的特征向量,则特征值λ等于().A3B5C7D不能确定