初等矩阵是可逆的且其逆矩阵仍是与原初等矩阵同类型的初等矩阵。

初等矩阵是可逆的且其逆矩阵仍是与原初等矩阵同类型的初等矩阵。


参考答案和解析
正确

相关考题:

两个初等矩阵的乘积仍是初等矩阵。() 此题为判断题(对,错)。

用一初等矩阵左乘一矩阵B,等于对B施行相应的()变换。 A、行变换B、列变换C、既不是行变换也不是列变换

设矩阵A,B,C,X为同阶方阵,且A,B可逆,AXB=C,则矩阵X=() A、A^-1CB^-1B、CA^-1B^-1C、B^-1A^-1CD、CB^-1A^-1

设A、B为同阶可逆矩阵,则下列正确的说法是()。 A.A+B可逆B.A-B可逆C.A+B与A-B可逆D.AB可逆

设A,B都是N阶矩阵,且存在可逆矩阵P,使得AP=B,则().A.A,B合同B.A,B相似C.方程组AX=0与BX=0同解D.r(A)=r(B)

初等矩阵( )A.都可以经过初等变换化为单位矩阵B.所对应的行列式的值都等于1C.相乘仍为初等矩阵D.相加仍为初等矩阵

设A,B为同阶可逆矩阵,则( )。A.AB=BAB.C.D.存在可逆矩阵P和Q,使PAQ=B

下列矩阵中,( )不是初等矩阵。

设矩阵A,B,C均为n阶矩阵,若AB=C,且B可逆,则( )A.矩阵C的行向量组与矩阵A的行向量组等价B.矩阵C的列向量组与矩阵A的列向量组等价C.矩阵C的行向量组与矩阵B的行向量组等价D.矩阵C的行向量组与矩阵B的列向量组等价

设A,B是可逆矩阵,且A与B相似,则下列结论错误的是

设A、B为同阶可逆矩阵,则

用矩阵分块的方法,证明矩阵可逆,并求其逆矩阵.

设A1,A2分别为m阶,n阶可逆矩阵,分块矩阵.证明:A可逆,且

设,用初等行变换的方法求A的逆矩阵.然后据此将A分解成初等矩阵的乘积.

设n阶矩阵A满足,(1)证明A,A+2E,A+4E可逆,并求它们的逆;(2)当时,判断是否可逆,并说明理由。

设A,B,A+B都是可逆矩阵,证明可逆,并求其逆矩阵.

已知A,B和A+B均为可逆矩阵,试证也可逆,并求其逆矩阵.

证明:若矩阵A可逆,则其逆矩阵必然唯一.

设n阶矩阵A可逆,且detA=a,求,.

证明下列命题:(1) 若A,B是同阶可逆矩阵,则(AB)*=B*A*.(2) 若A可逆,则A*可逆且.(3) 若AA′=E,则.

设A,B,C均为n阶矩阵,若AB=C,且B可逆,则 A.A矩阵C的行向量组与矩阵A的行向量组等价B.矩阵C的列向量组与矩阵A的列向量组等价C.矩阵C的行向量组与矩阵B的行向量组等价D.矩阵C的列向量组与矩阵B的列向量组等价

已知a是常数,且矩阵可经初等列变换化为矩阵.  (Ⅰ)求a;  (Ⅱ)求满足AP=B的可逆矩阵P.

设A是3阶矩阵,P=(a1,a2,a3)是3阶可逆矩阵,且P-1AP=

设A为3阶矩阵.P为3阶可逆矩阵,且A.B.C.D.

设A是3阶矩阵,P = (α1,α2,α3)是3阶可逆矩阵,且,若矩阵Q=(α2,α1,α3),则Q-1AQ=( )。

求可逆矩阵A的逆矩阵的指令是()

问答题设A为m×n矩阵(n<m),且AX=b有唯一解,证明:矩阵ATA为可逆矩阵,且方程组AX(→)=b(→)的解为X(→)=(ATA)-1ATb(→)(AT为A的转置矩阵)。

填空题求可逆矩阵A的逆矩阵的指令是()