证明:若矩阵A可逆,则其逆矩阵必然唯一.

证明:若矩阵A可逆,则其逆矩阵必然唯一.


参考解析

解析:【证明】设存在可逆阵B,C,使得AB=AC=E,于是A(B-C)=O,故r(A)+r(B-C)≤n,因为A可逆,所以r(A)=n,从而r(B-C)=0,B-C=O,于是B=C,即A的逆矩阵是唯一的.

相关考题:

若A是____,则A必为方阵。 A.对称矩阵B.可逆矩阵C.n阶矩阵的转置矩阵D.线性方程组的系数矩阵

若A是____,则其转置与它本身相等。 A.对角矩阵B.三角形矩阵C.可逆矩阵D.对称矩阵

若矩阵A可逆,则AB与BA相似。() 此题为判断题(对,错)。

设A,B为n阶矩阵,则下列结论正确的是().A.若A,B可逆,则A+B可逆B.若A,B可逆,则AB可逆C.若A+B可逆,则A-B可逆D.若A+B可逆,则A,B都可逆

设a为N阶可逆矩阵,则( ).A.若AB=CB,则a=C:B.C.A总可以经过初等变换化为单位矩阵E:D.以上都不对.

对任一矩阵A,则一定是( ).A.可逆矩阵B.不可逆矩阵C.对称矩阵D.反对称矩阵

设N阶矩阵A与对角矩阵合同,则A是().A.可逆矩阵B.实对称矩阵C.正定矩阵D.正交矩阵

设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r1,矩阵B=AC的秩为r,则

设a为N阶可逆矩阵,则( ).A.若AB=CB,则a=CB.C.A总可以经过初等变换化为单位矩阵ED.以上都不对

设A为n阶矩阵,A^2=A,则下列结论成立的是().A.A=OB.A=EC.若A不可逆,则A=OD.若A可逆,则A=E

设A是3阶矩阵,P=(a1,a2,a3)是3阶可逆矩阵,若矩阵Q=(a1,a2,a3),则Q-1AQ=

用矩阵分块的方法,证明矩阵可逆,并求其逆矩阵.

设A1,A2分别为m阶,n阶可逆矩阵,分块矩阵.证明:A可逆,且

设A为n阶正定矩阵,证明:对任意的可逆矩阵P,P^TAP为正定矩阵.

设n阶矩阵A满足,(1)证明A,A+2E,A+4E可逆,并求它们的逆;(2)当时,判断是否可逆,并说明理由。

设A,B,A+B都是可逆矩阵,证明可逆,并求其逆矩阵.

设A是n阶矩阵,E+A是可逆矩阵,记,若A按足条件,证明是反对称矩阵。

已知A,B和A+B均为可逆矩阵,试证也可逆,并求其逆矩阵.

证明下列命题:(1) 若A,B是同阶可逆矩阵,则(AB)*=B*A*.(2) 若A可逆,则A*可逆且.(3) 若AA′=E,则.

设P为可逆矩阵,A=P^TP.证明:A是正定矩阵.

判断矩阵是否可对角化?若可对角化,求可逆矩阵使之对角化。

设A为n阶非零矩阵,E为n阶单位矩阵,若A^3=O,则 A.AE-A不可逆,E+A不可逆B.E-A不可逆,E+A可逆C.E-A可逆,E+A可逆D.E-A可逆,E+A不可逆

设A为n阶非零矩阵,E为n阶单位矩阵。若A3=0,则( )。A.E-A不可逆,E+A不可逆B.E—A不可逆。E+A可逆C.E—A可逆。E+A可逆D.E—A可逆。E十A不可逆

设A是3阶矩阵,P = (α1,α2,α3)是3阶可逆矩阵,且,若矩阵Q=(α2,α1,α3),则Q-1AQ=( )。

求可逆矩阵A的逆矩阵的指令是()

问答题设A为m×n矩阵(n<m),且AX=b有唯一解,证明:矩阵ATA为可逆矩阵,且方程组AX(→)=b(→)的解为X(→)=(ATA)-1ATb(→)(AT为A的转置矩阵)。

填空题求可逆矩阵A的逆矩阵的指令是()