求y=f(x)=2x3-3x2-12x+14的极值点和极值,以及函数曲线的凸凹性区间和拐点.
求y=f(x)=2x3-3x2-12x+14的极值点和极值,以及函数曲线的凸凹性区间和拐点.
参考解析
解析:
相关考题:
以下结论正确的是()。 A、若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B、函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C、若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D、若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.
若函数f(x,y)在闭区域D上连续,下列关于极值点的陈述中正确的是:A.f(x,y)的极值点一定是f(x,y)的驻点B.如果P0是f(x,y)的极值点,则P0点处B2-ACC.如果P0是可微函数f(x,y)的极值点,则在P0点处df=0D.f(x,y)的最大值点一定是f(x,y)的极大值点
若函数f(x,y)在闭区域D上连续,下列关于极值点的陈述中正确的是( )。A. f(x,y)的极值点一定是f(x,y)的驻点B.如果P0是f(x,y)的极值点,则P0点处B2-AC)C.如果P0是可微函数f(x,y)的极值点,则P0点处df=0D.f(x,y)的最大值点一定是f(x,y)的极大值点
设f(x)=|x(1-x)|,则( ).《》( )A.x=0是f(x)的极值点,但(0,0)不是曲线y=f(x)的拐点B.x=0不是f(x)的极值点,但(0,0)是曲线y=f(x)的拐点C.x=0是f(x)的极值点,且(0,0)是曲线y=f(x)的拐点D.x=0不是f(x)的极值点,(0,0)也不是曲线y=f(x)的拐点
单选题设函数f(x)满足关系式f″(x)+[f′(x)]2=x,且f′(0)=0,则( )。Af(0)是f(x)的极大值Bf(0)是f(x)的极小值C点(0,f(0))是曲线y=f(x)的拐点Df(0)不是f(x)的极值,点(0,f(0))也不是曲线y=f(x)的拐点
单选题若函数f(x,y)在闭区域D上连续,下列关于极值点的陈述中正确的是()。Af(x,y)的极值点一定是f(x,y)的驻点B如果P0是f(x,y)的极值点,则P0点处B2-AC0C如果P0是可微函数f(x,y)的极值点,则P0点处df=0Df(x,y)的最大值点一定是f(x,y)的极大值点