设n阶矩阵A有一个特征值3,则|-3E+A|=_________.
设A为n阶对称矩阵,则A是正定矩阵的充分必要条件是( ). A.二次型xTAx的负惯性指数零B.存在n阶矩阵C,使得A=CTCC.A没有负特征值D.A与单位矩阵合同
设A是n阶矩阵,且E+3A不可逆,则()。 A.3是A的特征值B.-3是A的特征值C.1/3是A的特征值D.-1/3是A的特征值
设n阶矩阵A与对角矩阵相似,则().A.A的n个特征值都是单值B.A是可逆矩阵C.A存在n个线性无关的特征向量D.A一定为n阶实对称矩阵
设A为m×n阶矩阵,B为n×m阶矩阵,且m>n,令r(AB)=r,则().A.r>mB.r=mC.rD.r≥m
设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r1,矩阵B=AC的秩为r,则
设A是n阶矩阵,且Ak=O(k为正整数),则( )。A.A一定是零矩阵B.A有不为0的特征值C.A的特征值全为0D.A有n个线性无关的特征向量
已知n阶可逆矩阵A的特征值为λ0,则矩阵(2A)-1的特征值是:
设A、B都是n阶可逆矩阵,且(AB)2=I,则(BA)2的值为( )。
设A,B为n阶矩阵. (1)是否有AB~BA;(2)若A有特征值1,2,…,n,证明:AB~BA.
设A为n阶矩阵,且|A|=0,≠0,则AX=0的通解为_______.
设A为n阶矩阵,A的各行元素之和为0且r(A)=n-1,则方程组AX=0的通解为_______.
设A为m×n阶实矩阵,且r(A)=n.证明:A^TA的特征值全大于零.
设A是三阶矩阵,有特征值是A的伴随矩阵,E是三阶单位阵,则
设A为三阶实对称矩阵,A的秩为2,且 (Ⅰ)求A的所有特征值与特征向量; (Ⅱ)求矩阵A.
设A为3阶实对称矩阵,A的秩为2,且. (Ⅰ)求A的特征值与特征向量; (Ⅱ)求矩阵A
设A为n阶方阵,A*是A的伴随矩阵,则||A|A*|等于( ).
设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)*等于()。A、-A*B、A*C、(-1)nA*D、(-1)n-1A*
设3阶方阵A有特征值2,且已知|A|=5,则A的伴随矩阵必有特征值().A、25B、12.5C、5D、2.5
填空题设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=____。
填空题设A为n阶方阵,E为n阶单位矩阵,且A2=A,则(A-2E)-1=____。
单选题设3阶方阵A有特征值2,且已知|A|=5,则A的伴随矩阵必有特征值().A25B12.5C5D2.5