设,E为3阶单位矩阵(1)求方程组的一个基础解系; (2)求满足的所有矩阵B

,E为3阶单位矩阵(1)求方程组的一个基础解系; (2)求满足的所有矩阵B


参考解析

解析:

相关考题:

设三阶矩阵A的特征值为λ1=1,λ2=0,λ3=1,则下列结论不正确的是().A.矩阵A不可逆B.矩阵A的迹为零C.特征值-1,1对应的特征向量正交D.方程组AX=0的基础解系含有一个线性无关的解向量

设n阶矩阵A的伴随矩阵A^*≠0,若ζ1,ζ2,ζ3,ζ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系A.不存在.B.仅含一个非零解向量.C.含有两个线性无关的解向量.D.含有三个线性无关的解向量.

已知矩阵.,且矩阵X满足AXA+BXB=AXB+BXA+E,其中E是三阶单位矩阵,求X.

求齐次线性方程组的基础解系

设(Ⅰ),(Ⅱ)  (1)求(Ⅰ),(Ⅱ)的基础解系;(2)求(Ⅰ),(Ⅱ)的公共解.

设3阶实对称矩阵A的各行元素之和都为3,向量都是齐次线性方程组AX=0的解.① 求A的特征值和特征向量.② 求作正交矩阵Q和对角矩阵

设n阶实对称矩阵A的秩为r,且满足,求 ①二次型的标准形; ②行列式的值,其中E为单位矩阵

设n阶矩阵A满足,(1)证明A,A+2E,A+4E可逆,并求它们的逆;(2)当时,判断是否可逆,并说明理由。

设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)为,(Ⅱ)有一个基础解系(0,1,1,0)T,(-1,2,2,1)T.求(Ⅰ)和(Ⅱ)的全部公共解

求方程组的一个基础解系和通解。

设矩阵且方程组无解, (Ⅰ)求a的值; (Ⅱ) 求方程组的通解

设A是三阶实对称矩阵,r(A)=1,A^2-3A=O,设(1,1,-1)t为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A.

设A,B为三阶矩阵,且满足方程.若矩阵,求矩阵B.

设(Ⅰ)和(Ⅱ)都是个四元齐次方程组,已知(1,0,1,1)T,(-1,0,1,0)T,(0,1,1,0)T是(Ⅰ)的一个基础解系,(0,1,0,1)T,(1,1,-1,0)T是 (Ⅱ) 的一个基础解系.求(Ⅰ)和(Ⅱ)的公共解

设线性方程组(I)与(II)有公共的非零解,其中(I)为,(II)有基础解系,求p,t的值和全部公共解

设矩阵A=  (1)已知A的一个特征值为3,试求y;  (2)求可逆矩阵P,使(AP)^T(AP)为对角矩阵.

设A是3阶实对称矩阵,满足,并且r(A)=2. (1) 求A的特征值. (2)当实数k满足什么条件时A+kE正定?

设A=,E为三阶单位矩阵.  (Ⅰ)求方程组Ax=0的一个基础解系;  (Ⅱ)求满足AB=E的所有矩阵B.

设3阶矩阵A=[α1,α2,α3]有3个不同的特征值,且a3=a1+2a2.  (Ⅰ)证明r(A)=2;  (Ⅱ)若β=α1,α2,α3,求方程组Ax=β的通解.

设,.  已知线性方程组Ax=b存在2个不同的解.  (Ⅰ)求λ,a;  (Ⅱ)求方程组Ax=b的通解.

设A为三阶实对称矩阵,A的秩为2,且  (Ⅰ)求A的所有特征值与特征向量;  (Ⅱ)求矩阵A.

设A为3阶实对称矩阵,A的秩为2,且. (Ⅰ)求A的特征值与特征向量; (Ⅱ)求矩阵A

已知齐次线性方程组(1)方程组仅有零解;(2)方程组有非零解,在有非零解时,求此方程组的一个基础解系.

设A为4阶魔术矩阵,分别对A进行如下操作: 求矩阵A的逆; 求矩阵A的行列式; 求矩阵A的秩; 求矩阵A的迹;

单选题设A为4阶方阵,且r(A)=2,A*为A的伴随矩阵,则A*X(→)=0(→)的基础解系所含的解向量的个数为(  )。A1B2C3D4

问答题设A为4阶魔术矩阵,分别对A进行如下操作: 求矩阵A的逆; 求矩阵A的行列式; 求矩阵A的秩; 求矩阵A的迹;

填空题设A为n阶方阵,E为n阶单位矩阵,且A2=A,则(A-2E)-1=____。