2、利用插值多项式的导数来近似函数的导数,构造的数值微分公式叫做[ ].A.插值逼近公式;B.数值积分公式;C.差商型数值微分公式;D.插值型数值微分公式.
2、利用插值多项式的导数来近似函数的导数,构造的数值微分公式叫做[ ].
A.插值逼近公式;
B.数值积分公式;
C.差商型数值微分公式;
D.插值型数值微分公式.
参考答案和解析
插值型数值微分公式.
相关考题:
插值的基本思想是在插值点附近选取几个合适的节点,过这些选取的点构造出一个简单的函数 g(x),在此小段上用 g(x)代替原函数 f(x),插值点的函数值( )用( )的值代替。 A. g(x),f(x)B. f(x),g(x)C. g(x),原函数D. 理论值,近似值
为了保证插值函数能更好地密合原来的函数,不但要求“过点”,即两者在节点上具有相同的函数值,而且要求“相切”,即在节点上还具有相同的导数值,这类插值称为()A、牛顿插值B、埃尔米特插值C、分段插值D、拉格朗日插值
区间[a,b]上的三次样条插值函数是() A、在[a,b]上2阶可导,节点的函数值已知,子区间上为3次多项式B、在区间[a,b]上连续的函数C、在区间[a,b]上每点可微的函数D、在每个子区间上可微的多项式
(Ⅰ)设函数u(x),ν(x)可导,利用导数定义证明[u(x)ν(x)]’=u’(x)ν(x)+u(x)ν’(x); (Ⅱ)设函数u1(x),u2(x),…,un(x)可导,f(x)=u1(x)u2(x)…un(x),写出f(x)的求导公式.
对于二元函数z=f(x,y),下列有关偏导数与全微分关系中正确的命题是()。A、偏导数存在,则全微分存在B、偏导数连续,则全微分必存在C、全微分存在,则偏导数必连续D、全微分存在,而偏导数不一定存在
单选题下列关于不同插值公式的部分叙述,错误的为( )。A牛顿基本插值公式需要计算多阶的差商B分段插值公式是为了得到稳定性解,避免高阶多项式的不稳定性C三次Hermite插值公式需要计算一阶差商D三次样条插值公式在整个插值区间具有连续的二阶导数
单选题以下关于导数叙述不对的是()。A导数是差商的极限B导数是经济函数的边际C导数是函数的微分D导数是函数的微分与自变量的微分之商