单选题已知曲线y=y(x)经过原点,且在原点的切线平行于直线2x-y-5=0,而y(x)满足y″-6y′+9y=e3x,则y(x)等于( )。Asin2xBx2e2x/2+sin2xCx(x+4)e3x/2D(x2cosx+sin2x)e3x
单选题
已知曲线y=y(x)经过原点,且在原点的切线平行于直线2x-y-5=0,而y(x)满足y″-6y′+9y=e3x,则y(x)等于( )。
A
sin2x
B
x2e2x/2+sin2x
C
x(x+4)e3x/2
D
(x2cosx+sin2x)e3x
参考解析
解析:
曲线所满足的非齐次微分方程对应齐次方程的特征方程为λ2-6λ+9=0,故特征根为λ=3(二重)。故齐次方程的通解为y0(x)=(C1+C2x)e3x设非齐次方程的特解为Ax2e3x,代入微分方程,可得A=1/2,故非齐次方程的通解为y(x)=(C1+C2x)e3x+x2e3x/2。又因为曲线过原点,故y(0)=0;曲线在原点的切线平行于直线2x-y-5=0,故y′(0)=2。根据初值条件y(0)=0,y′(0)=2,可得C1=0,C2=2。故非齐次方程的通解为y(x)=2xe3x+x2e3x/2=x(x+4)e3x/2。故应选(C)。
曲线所满足的非齐次微分方程对应齐次方程的特征方程为λ2-6λ+9=0,故特征根为λ=3(二重)。故齐次方程的通解为y0(x)=(C1+C2x)e3x设非齐次方程的特解为Ax2e3x,代入微分方程,可得A=1/2,故非齐次方程的通解为y(x)=(C1+C2x)e3x+x2e3x/2。又因为曲线过原点,故y(0)=0;曲线在原点的切线平行于直线2x-y-5=0,故y′(0)=2。根据初值条件y(0)=0,y′(0)=2,可得C1=0,C2=2。故非齐次方程的通解为y(x)=2xe3x+x2e3x/2=x(x+4)e3x/2。故应选(C)。
相关考题:
intx=1,y=6;while(y--){x++;}System.out.println(x=”+x+y=”+y);Whatistheresult?() A.x=6y=0B.x=7y=0C.x=6y=-1D.x=7y=-1E.Compilationfails.
若方程Y=a+bX中的截距a 若方程Y=a+bX中的截距aA、随着X的增大,Y增大B、随着X的增大,Y减少C、随着X的减少,Y减少D、回归直线与Y轴的交点在原点下方E、回归直线与Y轴的交点在原点上方
单选题曲线y=y(x)经过原点且在原点处的切线与直线2x+y=6平行,而y=y(x)满足方程y″-2y′+5y=0,则此曲线的方程为( )。Ay=exsin2xBy=-exsin2xCy=exsinxDy=-exsinx
单选题I=∮L(-ydx+xdy)/(x2+y2),因为∂Q/∂x=∂P/∂y=(y2-x2)/(x2+y2)2,所以( )。A对任意闭曲线L,I=0B在L为不含原点在内的闭区域的边界线时I=0C因为∂Q/∂x=∂P/∂y在原点不存在,故对任意L,I≠0D在L含原点在内时I=0,不含原点时I≠0
单选题悬臂梁长度为l,取自由端为坐标原点,则求梁的挠曲线时确定积分常数的边界条件为()。Ax=0、y=0;x=0、y¢=0Bx=l、y=0;x=l、y¢=0Cx=0、y=0;x=l、y¢=0Dx=l、y=0;x=0、y¢=0
单选题垂直于x轴的动直线与过原点的曲线y=y(x)(x≥0,y≥0)以及x轴围成一个以[0,x]为底边的曲边梯形,其面积为y3(x).函数y(x)的隐函数形式是().Ay2-x=0By2+x=0C3y2-2x=0D2y-3x2=0
单选题曲线y=y(x)经过原点且在原点处的切线与直线2x+y=6平行,而y=y(x)满足方程y″-2y′+5y=0,则此曲线的方程为( )。Ay=excos2xBy=-excos2xCy=exsin2xDy=-exsin2x