设A,B均为n阶矩阵,(I一B)可逆,则矩阵方程A+BX=X的解X=()。
设A,B均为n阶可逆矩阵,求证:(AB)*=B*A*。
设A、B都是n阶可逆矩阵,且(AB)2=I,则(BA)2的值为( )。
设A为n阶非零矩阵,E为n阶单位矩阵,若A^3=O,则 A.AE-A不可逆,E+A不可逆B.E-A不可逆,E+A可逆C.E-A可逆,E+A可逆D.E-A可逆,E+A不可逆
设A1,A2分别为m阶,n阶可逆矩阵,分块矩阵.证明:A可逆,且
设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)*等于( )。A.-A.*B.A.*C.(-1)nA.*D.(-1)n-1A.*
设A,B为n阶矩阵,则下列结论正确的是().A.若A,B可逆,则A+B可逆B.若A,B可逆,则AB可逆C.若A+B可逆,则A-B可逆D.若A+B可逆,则A,B都可逆
设A,B,C均为n阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B-C=A.EB.-EC.AD.-A
设A、B都是n阶方阵,下面结论正确的是A.若A、B均可逆,则A+B可逆.B.若A、B均可逆,则AB可逆.C.若A+B可逆,则A-B可逆.D.若A+B可逆,则A,B均可逆.
设A和B均为n阶矩阵,则必有( )。A.|A+B|=|A|+|B|B.AB=BAC.|AB|=|BA|D.
设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r1,矩阵B=AC的秩为r,则
设N阶矩阵A与对角矩阵合同,则A是().A.可逆矩阵B.实对称矩阵C.正定矩阵D.正交矩阵
设n阶矩阵A与对角矩阵相似,则().A.A的n个特征值都是单值B.A是可逆矩阵C.A存在n个线性无关的特征向量D.A一定为n阶实对称矩阵
设A.B均为n阶矩阵,则下列正确的为( )。A、det(A+B)=detA+detBB、AB=BAC、det(AB)=det(AB)D、(A-B)2=A2-2AB+B2
均为n阶可逆矩阵,则=( )。A.B.A+BC.D.
设A为n阶非零矩阵,E为n阶单位矩阵。若A3=0,则( )。A.E-A不可逆,E+A不可逆B.E—A不可逆。E+A可逆C.E—A可逆。E+A可逆D.E—A可逆。E十A不可逆
设A,B,A+B,A-1+ B-1均为n阶可逆矩阵,则(A-1+ B-1)-1=( )。A、A-1+ B-1B、A+BC、A(A+B) -1 BD、(A+B) -1
设A和B均为n阶矩阵(n>1),m是大于1的整数,则必有( )。
设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)n等于( )。A. -An B. An C. (-1)nAn D. (-1)n-1An
设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)*等于()。A、-A*B、A*C、(-1)nA*D、(-1)n-1A*
单选题设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)*等于()。A-A*BA*C(-1)nA*D(-1)n-1A*