为了考察某种类型的电子元件的使用寿命情况,假定该电子元件使用寿命的分布是正态分布。而且根据历史记录得知该分布的参数为:平均使用寿命μ0为100小时,标准差a为10小时。现在随机抽取100个该类型的电子元件,测得平均寿命为102小时,给定显著性水平a=0.05,为了判断该电子元件的使用寿命是否有明显的提高,下列说法正确的有( )。

为了考察某种类型的电子元件的使用寿命情况,假定该电子元件使用寿命的分布是正态分布。而且根据历史记录得知该分布的参数为:平均使用寿命μ0为100小时,标准差a为10小时。现在随机抽取100个该类型的电子元件,测得平均寿命为102小时,给定显著性水平a=0.05,为了判断该电子元件的使用寿命是否有明显的提高,下列说法正确的有( )。



参考解析

解析:

相关考题:

设某产品使用寿命X服从正态分布,要求平均寿命不低于1000小时,现从一批这种产品中随机抽出25只,测得平均寿命为950小时,方差为100小时,检验这批产品是否合格可用()。 A、t检验法B、χ2检验法C、Z检验法D、F检验法

一种电子元件的正常寿命服从λ=0.1的指数分布,则这个电子元件可用时间在100小时之内的概率为( )。A.99.05%B.99.85%C.99.95%D.99.99%

某超市欲从深圳某公司购进一批净水器,为了检验该产品的质量,超市随机抽取25件净水器进行使用寿命的测试,产品的使用寿命服从正态分布,测得结果如下,平均使用寿命为1061小时,标准差为66.96小时。该超市要求以95%的置信水平估计该批净水器使用寿命的置信区间。

为了考察某种类型的电子元件的使用寿命情况,假定该电子元件使用寿命的分布是正态分布。而且根据历史记录得知该分布的参数为:平均使用寿命μ0为100小时,标准差口为10小时。现在随机抽取100个该类型的电子元件,测得平均寿命为102小时,给定显著性水平α=0.05,为了判断该电子元件的使用寿命是否有明显的提高,下列说法正确的有( )。A.提出假设H0:μ≤100;H1:μ>100B.提出假设H0:μ≥100;H1:μ<100C.检验统计量及所服从的概率分布为D.如果Z>Zα,则称与μ0的差异是显著的,这时拒绝H0E.检验结果认为该类型的电子元件的使用寿命确实有显著提高

某种电子元件的重量x(单位:g)服从正态分布,μ,σ2均未知。测得16只元件的重量如下:159,280,101,212,224,379,179,264,222,362,168,250,149,260, 485,170,判断元件的平均重量是否大于225g(取α=0.05)。下列计算过程中正确的提法有( )。A.提出假设:H0:μ≤225;H1:μ>225B.提出假设:H0:μ≥225;H1:μ<225C.检验统计量及其概率分布为D.取α=0.05,经计算有:T<t0.05(15)E.接受H0,即认为元件的平均重量不大于225g

对某天生产的2000件电子元件的耐用时间进行全面检测,又抽取5%进行抽样复测,资料如表5-1所示。规定耐用时间在3000小时以下为不合格品,则该电子元件合格率的抽样平均误差为 ( )。A.1.63%B.1.54%C.1.52%D.1.35%

一种电子元件的正常寿命服从λ=0.1的指数分布,则这个电子元件可用时间在100小时之内的概率为( )。A. 99. 05% B. 99. 85% C. 99. 95% D. 99. 99%

某批木材的直径服从正态分布,从中随机抽取20根,测得平均直径为=32.5cm,样本标准差为15.问在显著性水平为0.05下,是否可以认为这批木材的直径为30cm?

某种元件使用寿命X~N(μ,10^2).按照客户要求该元件使用寿命不能低于1000h,现从该批产品中随机抽取25件,其平均使用寿命为x=995,在显著性水平α=0.05下确定该批产品是否合格?

某厂生产某种产品,正常生产时,该产品的某项指标服从正态分布N(50,3.8^2),在生产过程中为检验机器生产是否正常,随机抽取50件产品,其平均指标为=51.26(设生产过程中方差不改变),在显著性水平为a=0.05下,检验生产过程是否正常.

设某次考试的学生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平为0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程.  附表:t分布表

(二)质检人员从生产线上随机抽取5件产品检验其使用寿命,产品的质量标准是使用寿命不小于100小时。5件产品的使用寿命(单位:小时)分别为125、100、115、90、125。请根据上述资料回答下列问题:已知产品的使用寿命服从正态分布,样本方差为S2,样本均值为 ,则生产线上该种产品平均使用寿命95%的置信区间为( )。(注:Z0.025=1.96,t0.025(4)=2.776)

假定某门学科的测验成绩分布为正态分布,从某一学区随机抽取的65名考生的 平均分为74,标准差为8。 该学区所有考生平均成绩的99%的罝信区间是A.73.20-74.80B.72.04-75.96C.72.36-75.64D.71.42-76.58

假定某门学科的测验成绩分布为正态分布,从某一学区随机抽取的65名考生的 平均分为74,标准差为8。 根据本次测验成绩,该测验分数的平均数的标准误

某灯泡厂家称平均使用寿命在1100小时以上随机抽取25只,测得其平均寿命为991小时,标准差为39.02小时。服从正态分布,取显著性水平为0.01,厂家的说法是否成立。

某灯泡厂家称其灯泡的平均使用寿命在1200小时以上。现从随机抽取25只,得到样本均值为1181.6小时,标准差为45.08小时服从正态分布。根据案例建立适当的原假设和备择假设。

某食品公司开发了一种新食品,为了验证消费者对该食品是否喜爱,公司组织了一次市场调研,共调研了400名消防者,其中358名观众喜爱该产品,问喜爱该产品的消费者服从()A、均值是200,标准差为20的正态分布B、均值是200,标准差为10的正态分布C、均值是200,标准差为100的正态分布D、其他分布

某种电子元件的使用者要求,一批元件的废品率不能超过2‰,否则拒收。在上述检验中,0.05显著性水平对应的标准正态分布临界值是()。A、1.645B、±1.96C、-1.645D、±1.645

某电子元件厂某月生产电子管10000个,采用随机抽样检验产品的平均使用寿命和产品合格率,样本容量为180个,检验结果180个电子管的平均使用寿命为3880小时,产品合格数为174个。要求推断该批电子管的平均使用寿命、产品合格率和总合格品数。

电子元件厂日产10000只元件,经多次一般测试得知一等品率为92%,现拟采用随机抽样方式进行抽检,如果求误差范围在2%之内,可靠程度为95.45%,需抽取()电子元件。

某项设备全新使用寿命是10年,现已使用8年,租赁该资产2年,租赁期占使用寿命已超过75%,因此该业务可判断为融资租赁业务。

某设备制造企业生产的小型设备服从平均寿命为40000小时的指数分布,抽取100个设备样本,计算出其平均寿命,则其平均寿命服从()A、均值为40000小时的指数分布B、近似为均值是40000小时,标准差为40000小时的正态分布C、近似为均值是40000小时,标准差为4000小时的正态分布D、近似为均值是40000小时,标准差为400小时的正态分布

问答题某工厂收到供货方发来的一批电子元件的例子中,共抽取了10件电子元件进行检验,使用样本的方差为S2=8000.56(小时)。试在95%的置信概率下对该批电子元件使用寿命的方差和标准差进行区别。

问答题40.已知某种类型电子元件的寿命X(单位:小时)服从指数分布,它的概率密度为 一台仪器装有4个此种类型的电子元件,其中任意一个损坏时仪器便不能正常工作.假设4个电子元件损坏与否互相独立. 试求:(1)一个此种类型电子元件能工作2 000小时以上的概率p1; (2)一台仪器能正常工作2 000小时以上的概率p2.

问答题某灯泡厂家称其灯泡的平均使用寿命在1200小时以上。现从随机抽取25只,得到样本均值为1181.6小时,标准差为45.08小时服从正态分布。根据案例建立适当的原假设和备择假设。

单选题总体不呈正态分布,从该总体中随机抽取容量为1000的一切可能样本的平均数的分布接近于:()A二项分布BF分布Ct分布D正态分布

多选题(二)质检人员从生产线上随机抽取5件产品检验其使用寿命,产品的质量标准是使用寿命不小于100小时。5件产品的使用寿命(单位:小时)分别为125、100、115、90、125。请根据上述资料回答下列问题:5件产品的使用寿命( )。A中位数为115B算术平均数为111C呈左偏态分布D呈右偏态分布