单选题设y=f[(2x-1)/(x+1)],f′(x)=ln(x1/3),则dy/dx=( )。Aln[(2x-1)/(x-1)]/(x+1)2Bln[(2x+1)/(x+1)]/(x+1)2Cln[(2x+1)/(x+1)]/(x-1)2Dln[(2x-1)/(x+1)]/(x+1)2
单选题
设y=f[(2x-1)/(x+1)],f′(x)=ln(x1/3),则dy/dx=( )。
A
ln[(2x-1)/(x-1)]/(x+1)2
B
ln[(2x+1)/(x+1)]/(x+1)2
C
ln[(2x+1)/(x+1)]/(x-1)2
D
ln[(2x-1)/(x+1)]/(x+1)2
参考解析
解析:
令u=(2x-1)/(x+1),则u′(x)=3/(x+1)2。dy/dx=f′(u)·u′(x)=ln(u1/3)·3/(x+1)2=ln[(2x-1)/(x+1)]/(x+1)2。
令u=(2x-1)/(x+1),则u′(x)=3/(x+1)2。dy/dx=f′(u)·u′(x)=ln(u1/3)·3/(x+1)2=ln[(2x-1)/(x+1)]/(x+1)2。
相关考题:
单选题设y=f(lnx)ef(x),其中f可微,则dy=( )。A[f′(lnx)ef(x)+f′(x)f(lnx)ef(x)]dxB[f′(lnx)ef(x)/x+f′(x)f(lnx)ef(x)]dxC[f(lnx)ef(x)/x+f(x)f(lnx)ef(x)]dxD[f′(lnx)ef(x)/x+f(x)f(lnx)ef(x)]dx
单选题设函数f(u)可微,且f′(0)=1/2,则z=f(4x2-y2)在点(1,2)处的全微分dz|(1,2)=( )。A4dx+2dyB4dx-2dyC-4dx+2dyD-4dx-2dy
单选题设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=( )。A1/5B1/7C-1/7D-1/5
单选题设y=f[(2x-1)/(x+1)],f′(x)=ln(x1/3),则dy/dx( )。Aln[(2x-1)/(x+1)](x+1)Bln[(2x-1)/(x+1)]/(x+1)2Cln[(2x-1)/(x+1)](x+1)2Dln[(2x-1)/(x+1)]/(x+1)
单选题若函数z=f(x,y)满足∂2z/∂y2=2,且f(x,1)=x+2,fy′(x,1)=x+1,则f(x,y)=( )。Ay2+(x-1)y+2By2+(x+1)y+2Cy2+(x-1)y-2Dy2+(x+1)y-2
单选题设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=( )。A1B-1C1/7D-1/7
单选题设y=f(lnx)ef(x),其中f可微,则dy=( )。A[f(lnx)ef(x)/x+f′(x)f(lnx)ef(x)]dxB[f′(lnx)ef(x)/x+f′(x)f(lnx)ef(x)]dxC[f′(lnx)ef(x)/x+f(x)f(lnx)ef(x)]dxD[f(lnx)ef(x)/x+f(x)f(lnx)ef(x)]dx
单选题设向量u(→)=3i(→)-4j(→),v(→)=4i(→)+3j(→),且二元可微函数f(x,y)在点P处有∂f/∂u(→)|P=-6,∂f/∂v(→)|P=17,则df|P=( )。A10dx+5dyB10dx+15dyC15dx+10dyD5dx+10dy
单选题设函数y=y(x)由方程ln(x2+y)=x3y+sinx确定,则(dy/dx)|x=0=( )。A0B1C2De