单选题函数f(x)在[a,b]上连续是存在的(  )。A必要条件B充分条件C充要条件D以上均不对

单选题
函数f(x)在[a,b]上连续是存在的(  )。
A

必要条件

B

充分条件

C

充要条件

D

以上均不对


参考解析

解析:
设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积,故B项正确。

相关考题:

以下结论正确的是()。 A、若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B、函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C、若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D、若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.

若函数f(x)在x0处连续,则f(x)在x0处极限存在。() 此题为判断题(对,错)。

若函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),则在(a,b)内满足f ′(x0)=0的点x0(  )。A.必存在且只有一个B.至少存在一个C.不一定存在D.不存在

设函数f(x)在x=a的某个邻域内连续,且f(a)为极大值,则存在δ>0,当x∈(a-δ,a+δ)时,必有( )

设f(x)是定义在(-∞,+∞)上的连续函数,则( ).A.B.C.D.

设函数f(x)与g(x)在[0,1]上连续,且f(x)≤g(x),且对任何的c∈(0,1)( )

设函数f(x)在区间[a,b]上连续,则下列结论中哪个不正确?D.f(x)在[a,b]上是可积的

下列命题正确的是()A.函数f(x)的导数不存在的点,一定不是f(x)的极值点B.若x0为函数f(x)的驻点,则x0必为f(x)的极值点C.若函数f(x)在点x0处有极值,且f'(x0)存在,则必有f'(x0)=0D.若函数f(x)在点x0处连续,则f'(x0)一定存在

函数f(x)在区间[a,b]上连续,且x∈[a,b],则下列导数为零的是(  ).

已知微分方程y’+y=f(x),其中f(x)是R上的连续函数.  (Ⅰ)若f(x)=x,求方程的通解.  (Ⅱ)若f(x)是周期为T的函数,证明:方程存在唯一的以T为周期的解.

(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.

设f(x)为[a,b]上的连续函数,则下列命题不正确的是( )。A.f(x)在[a,b]上有最大值B.f(x)在[a,b]上一致连续C.f(x)在[a,b]上可积D.f(x)在[a,b]上可导

函数f(x)在[a,b]上黎曼可积的必要条件是f(x)在[a,b]上( )。A.可微B.连续C.不连续点个数有限D.有界

设其中g(x)是有界函数,则f(x)在x=0点( )。A、极限不存在B、极限存在但不连续C、连续、但不可导D、可导

设f(x)为开区间(a,b)上的可导函数,则下列命题正确的是( )。A.f(x)在(a,b)上必有最大值B.f(x)在(a,b)上必一致连续C.f(x)在(a,b)上必有D.f(x)在(a,b)上必连续

已知函数f(x)在闭区间[a,b].上连续,且f(a).f(b)

若函数F(x)在Dl上具有连续二阶导数(D是Dl内部的凸集),则F(x)为D上的凸函数的充分必要条件是F(x)的Hessian矩阵()A、半正定B、正定C、半负定D、负定

设f(x)在(-a,a)(a>0)上连续,F(x)是f(x)的一个原函数,则当f(x)是奇函数时,下面结论正确的是()。A、F(x)是偶函数B、F(x)是奇函数C、F(x)可能是奇函数,也可能是偶函数D、F(x)是否为奇函数不能确定

设函数在(a,b)内连续,则在(a,b)内()。A、f(x)必有界B、f(x)必可导C、f(x)必存在原函数D、D.必存在一点ξ∈(a,,使f(ξ)=0

以下叙述正确的是:连续函数f(x)在[a,b]上的定积分等于()。A、f(x)的导函数在b点的值减去在a点的值B、f(x)的导函数在a点的值减去在b点的值C、f(x)的原函数在b点的值减去在a点的值D、f(x)的原函数在a点的值减去在b点的值

设f(x)在(-a,a)(a>0)上连续,F(x)是f(x)的一个原函数,则当f(x)是偶函数时,下面结论正确的是()。A、F(x)是偶函数B、F(x)是奇函数C、F(x)可能是奇函数,也可能是偶函数D、F(x)是否是偶函数不能确定

单选题设函数在(a,b)内连续,则在(a,b)内()。Af(x)必有界Bf(x)必可导Cf(x)必存在原函数DD.必存在一点ξ∈(a,,使f(ξ)=0

问答题设不恒为常数的函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b)。证明:在(a,b)内至少存在一点ξ,使得f′(ξ)>0。

问答题设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,且存在相等的最大值。若f(a)=g(a),f(b)=g(b),证明:  (1)存在η∈(a,b)使f(η)=g(η);  (2)存在ξ∈(a,b)使f″(ξ)=g″(ξ)。

单选题设P(x)是在区间[α,b]上的y=f(x)川的分段线性插值函数,以下条件中不是P(x)必须满足的条件为( )。AP(x)在[a,b]上连续BP(Xk)=YkCP(x)在[α,b]上可导DP(x)在各子区间上是线性函数

单选题如果函数f(x)在点x0的某个邻域内恒有|f(x)|≤M(M是正数),则函数f(x)在该邻域内(  )。A极限存在B连续C有界D不能确定

单选题如果函数f(x)当x→x0时极限存在,则函数f(x)在点x0处(  )。A有定义B无定义C不一定有定义D连续