设f(x)为[a,b]上的连续函数,则下列命题不正确的是( )。A.f(x)在[a,b]上有最大值B.f(x)在[a,b]上一致连续C.f(x)在[a,b]上可积D.f(x)在[a,b]上可导

设f(x)为[a,b]上的连续函数,则下列命题不正确的是( )。

A.f(x)在[a,b]上有最大值
B.f(x)在[a,b]上一致连续
C.f(x)在[a,b]上可积
D.f(x)在[a,b]上可导

参考解析

解析:本题主要考查连续函数的特点。f(x)为[a,b]上的连续函数,则f(x)具有有界性,因此A、B、C三项都正确。可导的函数一定连续,但连续的函数不一定可导,所以D项错误。

相关考题:

设f(x)为连续函数,F(x)是f(x)的原函数,则( )。(A) 当f(x)是奇函数时,F(x)必为偶函数(B) 当f(x)是偶函数时,F(x)必为奇函数(C) 当f(x)是周期函数时,F(x)必为周期函数(D) 当f(x)是单增函数时,F(x)必为单增函数(E) 当f(x)是单减函数时,F(x)必为单减函数

设f(x)为连续函数,且下列极限都存在,则其中可推出f′(3)存在的是( )。A.B.C.D.

设f(x)是定义在(-∞,+∞)上的连续函数,则( ).A.B.C.D.

设f(x)在(-∞,+∞)内可导,则下列命题正确的是( )

设函数f(x)在区间[a,b]上连续,则下列结论中哪个不正确?

下列命题中,错误的是( ).A.设f(x)为奇函数,则f(x)的傅里叶级数是正弦级数B.设f(x)为偶函数,则f(x)的傅里叶级数是余弦级数C.D.

设f(x)、f'(x)为已知的连续函数,则微分方程y'+ f'(x)y = f(x)f'(x)的通解是:

设函数f(x)在x=0处连续,下列命题错误的是( ).

设f(x),f'(x)为已知的连续函数,则微分方程y'十f'(x)y=f(x)f'(x)的通解是:A. y=f(x)+ce-f(x) B. y= f(x)ef(x) -ef(x) +cC. y=f(x)-1+ce-f(x) D. y=f(x)-1+cef(x)

设函数f(x)在区间[a,b]上连续,则下列结论中哪个不正确?D.f(x)在[a,b]上是可积的

设f(x)是连续函数, 则f(x)=A. x2 B. x2-2 C 2x D. x2 -16/9

设f(x,y)为连续函数,且满足,其中D是由x轴、y轴、所围成的闭区域

设f(x)是连续函数,  (Ⅰ)利用定义证明函数可导,且F’(x)=f(x);  (Ⅱ)当f(x)是以2为周期的周期函数时,证明函数也是以2为周期的周期函数.

设F1(x)与F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是 A.Af1(x)f2(x)B.2f2(x)F1(x)C.f1(x)F2(x)D.f1(x)F2(x)+f2(x)f1(x)

下列命题中,正确的是( ).A.单调函数的导函数必定为单调函数B.设f(x)为单调函数,则f(x)也为单调函数C.设f(x)在(a,b)内只有一个驻点xo,则此xo必为f(x)的极值点D.设f(x)在(a,b)内可导且只有一个极值点xo,f(xo)=0

设f(x,y)为连续函数,则等于:

设连续函数f(x)满足方程

设f(x)为区间[a,b]上的连续函数,则曲线y=f(x)与直线x=a,x=b,y=0所围成的封闭图形的面积为( ).《》( )

设f(x)为开区间(a,b)上的可导函数,则下列命题正确的是( )。A.f(x)在(a,b)上必有最大值B.f(x)在(a,b)上必一致连续C.f(x)在(a,b)上必有D.f(x)在(a,b)上必连续

若 f(x)是连续函数,则下列命题不正确的是( )。

设f(x)为连续函数,那么等于( )。A. f(x + b) + f(x+a) B. f(x + b)-f(x + a) C. f(x+b)-f(a) D. f(b)-f(x+a)

设f(x)是连续函数,且,则f(x)=( )。A. x2 B. X2-2 C. 2x D. x2-16/9

设f(x,y)为连续函数,

命题“若f(x)为奇函数,则f(-x)为奇函数”的否命题( )。A.若f(x)为偶函数,则f(-x)为偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)为奇函数,则fD.若f(-x)为奇函数,则f(x)不是奇函数

设F1(x)与F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是()A、f1(x)f2(x)B、2f2(x)F1(x)C、f1(x)F2(x)D、f1(x)F2(x)+f2(x)F1(x)

设载荷集度q(x)为截面位置x的连续函数,则q(x)是弯矩M(x)的()阶导函数。

单选题设函数f(x)在(-∞,+∞)内单调有界,{xn}为数列,下列命题正确的是(  )。A若{xn}收敛,则{f(xn)}收敛B若{xn}单调,则{f(xn)}收敛C若{f(xn)}收敛,则{xn}收敛D若{f(xn)}单调,则{xn}收敛