单选题已知f′(ex)=xe-x,且f(1)=0,则f(x)=(  )。A(lnx)2/4B(lnx)/2C(lnx)/4D(lnx)2/2

单选题
已知f′(ex)=xe-x,且f(1)=0,则f(x)=(  )。
A

(lnx)2/4

B

(lnx)/2

C

(lnx)/4

D

(lnx)2/2


参考解析

解析:
采用换元积分法,ex=t,则x=lnt,f′(t)=(lnt)/t,即f′(x)=(lnx)/x,故f(x)=∫[(lnx)/x]dx=(lnx)2/2+C,又f(1)=0,得C=0,则f(x)=(lnx)2/2。

相关考题:

如果f(x)对任何x都满足f(1+x)=2f(x),且f(0)存在,f’(0)=2,则f’(1)=()。 A.4B.-4C.8D.-8

曲线y=f(x)在点(x0,f(x0))有拐点,且f''(x0)存在,则f''(x0)=1。() 此题为判断题(对,错)。

已知f(x)=x2+ax+3,若f(2+x)=f(2-x),则f(2)=()。A.0B.-1C.-2D.-3

已知函数f(x)=a2+k的图象经过点(1,7),且其反函数f-1(x)的图像经过点(4,0),则函数f(x)的表达式是 ( )A.f(x)=4x+3B.f(x)=2x+5C.f(x)=5x+2D.f(x)=3x+5

数学运算已知f(x)=x2+ax+3,若f(2+x)=f(2-x),则f(2)=( )。A.0B.-1C.-2D.3

设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )A.f(a)=0且f′(a)=0B.f(a)=0且f′(a)≠0C.f(a)>0且f′(a)>D.f(a)<0且f′(a)<

若f(-x)=f(x),且在(0,+∞)内f′(x)>0,f″(x)<0,则f(x)在(-∞,0)内( )。A.f′(x)<0,f″(x)<0B.f′(x)<0,f″(x)>0C.f′(x)>0,f″(x)<0D.f′(x)>0,f″(x)>0

已知f(x)在(-∞,+∞)上是偶函数,若f‘(-x0)=-k≠0,则f‘(x0)等于:A.-KB.KC. -1/KD.1/K

且f(0)=0,则f(x)等于:

设f(x)函数在[0,+∞)上连续,则f(x)是:A. xe-xB.xe-x-ex-1 C. ex-2D. (x-1)e-x

若f(u)可导,且y=f(ex),则dy=()A.f'(ex)dxB.f'(ex)exdxC.f(ex)exdxD.f'(ex)

设函数f(x)可导,且f(x)f'(x)>0,则 A.Af(1)>f(-1)B.f(1)C.|f(1)|>|f(-1)|D.|f(1)|

非负连续函数f(x)满足f(0)=0,f(1)=1.已知以曲线y=f(x)为曲边,以[0,x]为底的曲边梯形,其面积与f(x)的n+1次幂成正比,则f(x)的表达式为

已知函数f(x)=f(x+4),f(0)=0,且在(—2,2)上有f'(x)=|x|,则f(19)=

设f(x)函数在[0,+∞)上连续,且满足,则f(x)是:A. xe-xB. xe-x-ex-1C. ex-2D. (x-1)e-x

设f(x)是R上的可导函数,且f(x)>0。若f′(x)-3x---2f(x)=0,且f(0)=1,求f(x)。

若f(x)为可导函数,且已知f(0) = 0,f'(0) = 2,则的值为()。A. 0 B. 1 C. 2 D.不存在

设f(x)的二阶导数存在,且f′(x)=f(1-x),则下列式中何式可成立()?A、f″(x)+f′(x)=0B、f″(x)-f′(x)=0C、f″(x)+f(x)=0D、f″(x)-f(x)=0

设偶函数f(x)在区间(-1,1)内具有二阶导数,且f″(0)=f′(0)+1,则f(0)为f(x)的一个极小值。

已知f’(x)=tanx2,且f(0)=1,则f(x)等于().A、tanx+x+1B、tanx-x+1C、-tanx-x+1D、-tanx+x+1

单选题已知f′(ex)=xe-x,且f(1)=0,则f(x)=(  )。A(lnx)2/4B(lnx)/2C(lnx)/4D(lnx)2/2

单选题设f(x),g(x)具有任意阶导数,且满足f″(x)+f′(x)g(x)+f(x)x=ex-1,f(0)=1,f′(0)=0。则(  )。Af(0)=1为f(x)的极小值Bf(0)=1为f(x)的极大值C(0,f(0))为曲线y=f(x)的拐点D由g(x)才能确定f(x)的极值或拐点

填空题已知f′(ex)=xe-x,且f(1)=0,则f(x)=____。

单选题已知f′(ex)=xe-x,且f(1)=0,则f(x)=(  )。A(lnx)/2B(lnx)2/2C(lnx)2Dlnx

判断题设偶函数f(x)在区间(-1,1)内具有二阶导数,且f″(0)=f′(0)+1,则f(0)为f(x)的一个极小值。A对B错

单选题已知f’(x)=tanx2,且f(0)=1,则f(x)等于().Atanx+x+1Btanx-x+1C-tanx-x+1D-tanx+x+1

单选题设f(x)的二阶导数存在,且f′(x)=f(1-x),则下列式中何式可成立()?Af″(x)+f′(x)=0Bf″(x)-f′(x)=0Cf″(x)+f(x)=0Df″(x)-f(x)=0

单选题已知f′(ex)=xe-x,且f(1)=0,则f(x)=(  )。AlnxBlnx/2C(lnx)2D(lnx)2/2