当松弛因子0<w<2且系数矩阵A是实对称正定矩阵时,则下列说法正确的是()A.Jacobi迭代法收敛B.G-S迭代法收敛C.超松弛迭代算法收敛D.低松弛迭代算法收敛

当松弛因子0<w<2且系数矩阵A是实对称正定矩阵时,则下列说法正确的是()

A.Jacobi迭代法收敛

B.G-S迭代法收敛

C.超松弛迭代算法收敛

D.低松弛迭代算法收敛


参考答案和解析
D

相关考题:

下列结论或等式正确的是()。 A.若A,B均为零矩阵,则有A=BB.矩阵乘法满足交换律,则(AB)k=AkBkC.对角矩阵是对称矩阵D.若A≠0,B≠0,则AB≠0

n阶对称矩阵A为正定矩阵的充分必要条件是()。 A、∣A∣0B、存在n阶矩阵P,使得A=PTPC、负惯性指数为0D、各阶顺序主子式均为正数

设A,B是正定实对称矩阵,则().A. AB,A+B一定都是正定实对称矩阵B. AB是正定实对称矩阵,A+B不是正定实对称矩阵C. A+B是正定实对称矩阵,AB不一定是正定实对称矩阵D. AB必不是正定实对称矩阵,A+B必是正定实对称矩阵

N阶实对称矩阵A正定的充分必要条件是().A.A无负特征值B.A是满秩矩阵C.A的每个特征值都是单值D.A^-1是正定矩阵

设A,B为正定矩阵,C是可逆矩阵,下列矩阵不是正定矩阵的是().

若A是实对称矩阵,则若|A|>O,则A为正定的

对称矩阵A正定的充分必要条件是|A|>O

实二次型矩阵A正定的充分必要条件是( )。A.二次型的标准形的n个系数全为正B.|A|>0C.矩阵A的特征值为2D.r(A)=n

设A,B为n阶对称矩阵,下列结论不正确的是().A.AB为对称矩阵B.设A,B可逆,则A^-1+B^-1为对称矩阵C.A+B为对称矩阵D.kA为对称矩阵

n阶实对称矩阵A为正定矩阵,则下列不成立的是( )。A.所有k级子式为正(k=1,2,…,n)B.A的所有特征值非负C.D.秩(A)=n

设N阶矩阵A与对角矩阵合同,则A是().A.可逆矩阵B.实对称矩阵C.正定矩阵D.正交矩阵

若A是实对称矩阵,则A为正定矩阵的充要条件是A的特征值全为正

当A是一个可逆实对称矩阵时, Α*和Α是否合同?

设A为m阶实对称矩阵且正定,B为m×n实矩阵,B^T为B的转置矩阵,试证:B^TAB为正定矩阵的充分必要条件是B的秩r(B)=n,

设Α是正定矩阵,B是实对称矩阵,证明ΑB可对角化

设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.

设A是3阶实对称矩阵,满足,并且r(A)=2. (1) 求A的特征值. (2)当实数k满足什么条件时A+kE正定?

设A为四阶实对称矩阵,且A^2+A=O.若A的秩为3,则A相似于

设A为3阶实对称矩阵,A的秩为2,且. (Ⅰ)求A的特征值与特征向量; (Ⅱ)求矩阵A

下列矩阵中,( )是正定矩阵。

在变尺度方法中,为了保证搜索方向是函数下降的方向,其变尺度矩阵A(k)必须是()A、正定矩阵B、对称正定矩阵C、半正定矩阵D、共轭矩阵

n阶实对称矩阵A为正定矩阵,则下列不成立的是()。A、所有k级子式为正(k=1,2,…,n)B、A的所有特征值非负C、秩(A)=n

对于所有非零向量X,若XTMX0,则二次矩阵M是()。A、三角矩阵B、负定矩阵C、正定矩阵D、非对称矩阵E、对称矩阵

单选题求解线性方程组的平方根法,要求其系数矩阵为( )。A三对角矩阵B上三角矩阵C对称正定矩阵D各类大型稀疏矩阵

多选题对于所有非零向量X,若XTMX0,则二次矩阵M是()。A三角矩阵B负定矩阵C正定矩阵D非对称矩阵E对称矩阵

单选题齐次线性方程组的系数矩阵记为A。若存在三阶矩阵B≠0使得AB=0,则(  )。Aλ=-2且|B|=0Bλ=-2且|B|≠0Cλ=1且|B|=0Dλ=1且|B|≠0

单选题求解线性方程组的追赶法,要求其系数矩阵为( )。A三对角矩阵B上三角矩阵C对称正定矩阵D各类大型稀疏矩阵

单选题在变尺度方法中,为了保证搜索方向是函数下降的方向,其变尺度矩阵A(k)必须是()A正定矩阵B对称正定矩阵C半正定矩阵D共轭矩阵