二次型为正定的充要条件是对应的矩阵为正定矩阵。() 此题为判断题(对,错)。
设A为n阶对称矩阵,则A是正定矩阵的充分必要条件是( ). A.二次型xTAx的负惯性指数零B.存在n阶矩阵C,使得A=CTCC.A没有负特征值D.A与单位矩阵合同
设A,B是正定实对称矩阵,则().A. AB,A+B一定都是正定实对称矩阵B. AB是正定实对称矩阵,A+B不是正定实对称矩阵C. A+B是正定实对称矩阵,AB不一定是正定实对称矩阵D. AB必不是正定实对称矩阵,A+B必是正定实对称矩阵
设有线性方程组Ax=b,若A对称正定,则赛德尔迭代收敛。() 此题为判断题(对,错)。
若方阵A的谱半径小于1,则解方程组Ax=b的Jacobi迭代法收敛。() 此题为判断题(对,错)。
设A,B为正定矩阵,C是可逆矩阵,下列矩阵不是正定矩阵的是().
n阶实对称矩阵A为正定矩阵,则下列不成立的是( )。A.所有k级子式为正(k=1,2,…,n)B.A的所有特征值非负C.D.秩(A)=n
设N阶矩阵A与对角矩阵合同,则A是().A.可逆矩阵B.实对称矩阵C.正定矩阵D.正交矩阵
若A是实对称矩阵,则A为正定矩阵的充要条件是A的特征值全为正
设A为m阶实对称矩阵且正定,B为m×n实矩阵,B^T为B的转置矩阵,试证:B^TAB为正定矩阵的充分必要条件是B的秩r(B)=n,
设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.
设A为四阶实对称矩阵,且A^2+A=O.若A的秩为3,则A相似于
在变尺度方法中,为了保证搜索方向是函数下降的方向,其变尺度矩阵A(k)必须是()A、正定矩阵B、对称正定矩阵C、半正定矩阵D、共轭矩阵
设Ax=b,其中A对称正定,问解此方程组的雅可比迭代法是否一定收敛?
若矩阵A的所有奇数阶主子式小于零,而所有偶数阶主子式大于零,则该矩阵为()矩阵。A、正定B、正定二次型C、负定D、负定二次型
若矩阵A的各阶顺序主子式均大于零,则该矩阵为()矩阵。A、正定B、正定二次型C、负定D、负定二次型
n阶实对称矩阵A为正定矩阵,则下列不成立的是()。A、所有k级子式为正(k=1,2,…,n)B、A的所有特征值非负C、秩(A)=n
对于所有非零向量X,若XTMX0,则二次矩阵M是()。A、三角矩阵B、负定矩阵C、正定矩阵D、非对称矩阵E、对称矩阵
多选题对于所有非零向量X,若XTMX0,则二次矩阵M是()。A三角矩阵B负定矩阵C正定矩阵D非对称矩阵E对称矩阵
单选题对于系数为正定对称矩阵的线性方程组,其最佳求解方法为( )A追赶法B平方根法C迭代法D高斯主元消去法)
问答题设Ax=b,其中A对称正定,问解此方程组的雅可比迭代法是否一定收敛?
单选题若矩阵A的所有奇数阶主子式小于零,而所有偶数阶主子式大于零,则该矩阵为()矩阵。A正定B正定二次型C负定D负定二次型
单选题在变尺度方法中,为了保证搜索方向是函数下降的方向,其变尺度矩阵A(k)必须是()A正定矩阵B对称正定矩阵C半正定矩阵D共轭矩阵
单选题若矩阵A的各阶顺序主子式均大于零,则该矩阵为()矩阵。A正定B正定二次型C负定D负定二次型