设A,B是正定矩阵,则A+B为()

设A,B是正定矩阵,则A+B为()


相关考题:

设A为n阶对称矩阵,则A是正定矩阵的充分必要条件是( ). A.二次型xTAx的负惯性指数零B.存在n阶矩阵C,使得A=CTCC.A没有负特征值D.A与单位矩阵合同

设A,B是正定实对称矩阵,则().A. AB,A+B一定都是正定实对称矩阵B. AB是正定实对称矩阵,A+B不是正定实对称矩阵C. A+B是正定实对称矩阵,AB不一定是正定实对称矩阵D. AB必不是正定实对称矩阵,A+B必是正定实对称矩阵

设A是n阶正定矩阵,证明:|E+A|>1.

设A为m阶实对称矩阵且正定,B为m×n实矩阵,B^T为B的转置矩阵,试证:B^TAB为正定矩阵的充分必要条件是B的秩r(B)=n,

设A为n阶正定矩阵,证明:对任意的可逆矩阵P,P^TAP为正定矩阵.

设A,B为n阶正定矩阵.证明:A+B为正定矩阵.

设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.

设A为m阶正定矩阵,B为m×n阶实矩阵.证明:B^SAB正定的充分必要条件是r(B)=n,

设P为可逆矩阵,A=P^TP.证明:A是正定矩阵.

设A,B,A+B都是可逆矩阵,证明可逆,并求其逆矩阵.

试证:如果A,B都是n阶正定矩阵,则A+B也是正定的

设A和B都是mn实矩阵,满足r(A+B)=n,证明正定

设Α是正定矩阵,B是实对称矩阵,证明ΑB可对角化

设U为可逆矩阵, , 证明为正定二次型

若A是实对称矩阵,则若|A|>O,则A为正定的

设A,B为n阶矩阵,则下列结论正确的是().A.若A,B可逆,则A+B可逆B.若A,B可逆,则AB可逆C.若A+B可逆,则A-B可逆D.若A+B可逆,则A,B都可逆

设A和B均为n阶矩阵,则必有( )。A.|A+B|=|A|+|B|B.AB=BAC.|AB|=|BA|D.

设N阶矩阵A与对角矩阵合同,则A是().A.可逆矩阵B.实对称矩阵C.正定矩阵D.正交矩阵

设A,B为正定矩阵,C是可逆矩阵,下列矩阵不是正定矩阵的是().

若A是实对称矩阵,则A为正定矩阵的充要条件是A的特征值全为正

设A,B都是,n阶矩阵,其中B是非零矩阵,且AB=O,则().A.r(B)=nB.r(B)C.A2-Bz=(A+B)(A-B)D.|A|=0

若A,口是正交矩阵,则下列说法错误的是( )。A、AB为正交矩阵B、A+B为正交矩阵C、A-1B为正交矩阵D、AB-1为正交矩阵

设A,B,A+B,A-1+ B-1均为n阶可逆矩阵,则(A-1+ B-1)-1=( )。A、A-1+ B-1B、A+BC、A(A+B) -1 BD、(A+B) -1

若A,B是正交矩阵,则下列说法错误的是()。A、AB为正交矩阵B、A+B为正交矩阵C、ATB为正交矩阵D、AB-1为正交矩阵

若矩阵A的所有奇数阶主子式小于零,而所有偶数阶主子式大于零,则该矩阵为()矩阵。A、正定B、正定二次型C、负定D、负定二次型

若矩阵A的各阶顺序主子式均大于零,则该矩阵为()矩阵。A、正定B、正定二次型C、负定D、负定二次型

单选题若矩阵A的各阶顺序主子式均大于零,则该矩阵为()矩阵。A正定B正定二次型C负定D负定二次型