问答题设Ax=b,其中A对称正定,问解此方程组的雅可比迭代法是否一定收敛?
问答题
设Ax=b,其中A对称正定,问解此方程组的雅可比迭代法是否一定收敛?
参考解析
解析:
暂无解析
相关考题:
设A为n阶方阵,r(A)n,下列关于齐次线性方程组Ax=0的叙述正确的是() A、Ax=0只有零解B、Ax=0的基础解系含r(A)个解向量C、Ax=0的基础解系含n-r(A)个解向量D、Ax=0没有解
设A,B是正定实对称矩阵,则().A. AB,A+B一定都是正定实对称矩阵B. AB是正定实对称矩阵,A+B不是正定实对称矩阵C. A+B是正定实对称矩阵,AB不一定是正定实对称矩阵D. AB必不是正定实对称矩阵,A+B必是正定实对称矩阵
设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。A.若Ax=0仅有零解,则Ax=b有惟一解B.若Ax=0有非零解,则Ax=b有无穷多个解C.若Ax=b有无穷多个解,则Ax=0仅有零解D.若Ax=b有无穷多个解,则Ax=0有非零解
设A是m×n阶矩阵,下列命题正确的是().A.若方程组AX=0只有零解,则方程组AX=b有唯一解B.若方程组AX=0有非零解,则方程组AX=b有无穷多个解C.若方程组AX=b无解,则方程组AX=0一定有非零解D.若方程组AX=b有无穷多个解,则方程组AX=0一定有非零解
填空题若线性代数方程组AX=b的系数矩阵A为严格对角占优阵,则雅可比迭代和高斯-塞德尔迭代都()。