设A 为 n×n 矩阵,且齐次线性方程组 AX=0 只有零解,则对任意 n 维列向量B,方程组AX=B()A.有无穷多解B.无解C.有唯一解D.只有零解
设A 为 n×n 矩阵,且齐次线性方程组 AX=0 只有零解,则对任意 n 维列向量B,方程组AX=B()
A.有无穷多解
B.无解
C.有唯一解
D.只有零解
参考答案和解析
Dr(A)=n-3,故基础解系中解向量个数为3,且线性无关. 选项(D)中,由(v 3 -v 2 -v 1 )+(v 3 +v 2 -v 1 )+(-2v 3 )=0 知v 3 -v 2 -v 1 ,v 3 +v 2 -v 1 ,-2v 3 线性相关.选项(A)、(B)、(C)中的向量组线性无关,且为三个解向量,故为基础解系. 故应选D.
相关考题:
设A为m*n矩阵,则有()。 A、若mn,则有ax=b无穷多解B、若mn,则有ax=0非零解,且基础解系含有n-m个线性无关解向量;C、若A有n阶子式不为零,则Ax=b有唯一解;D、若A有n阶子式不为零,则Ax=0仅有零解。
设A为n阶方阵,r(A)n,下列关于齐次线性方程组Ax=0的叙述正确的是() A、Ax=0只有零解B、Ax=0的基础解系含r(A)个解向量C、Ax=0的基础解系含n-r(A)个解向量D、Ax=0没有解
设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。A.若Ax=0仅有零解,则Ax=b有惟一解B.若Ax=0有非零解,则Ax=b有无穷多个解C.若Ax=b有无穷多个解,则Ax=0仅有零解D.若Ax=b有无穷多个解,则Ax=0有非零解
设n阶矩阵A的伴随矩阵A^*≠0,若ζ1,ζ2,ζ3,ζ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系A.不存在.B.仅含一个非零解向量.C.含有两个线性无关的解向量.D.含有三个线性无关的解向量.
设A为m×n矩阵,则齐次线性方程组Ax=0有非零解的充分必要条件是( )。A、矩阵A的任意两个列向量线性相关B、矩阵A的任意两个列向量线性无关C、矩阵A的任一列向量是其余列向量的线性组合D、矩阵A必有一个列向量是其余列向量的线性组合
单选题设A为m×n矩阵,则齐次线性方程组Ax=0有非零解的充分必要条件是( )。[2017年真题]A矩阵A的任意两个列向量线性相关B矩阵A的任意两个列向量线性无关C矩阵A的任一列向量是其余列向量的线性组合D矩阵A必有一个列向量是其余列向量的线性组合
单选题n元线性方程组AX(→)=b(→)有唯一解的充要条件为( )。AA为方阵且|A|≠0B导出组AX(→)=0(→)仅有零解C秩(A)=nD系数矩阵A的列向量组线性无关,且常数向量b(→)与A的列向量组线性相关
单选题非齐次线性方程组AX(→)=b(→)中未知数个数为n,方程个数为m,系数矩阵A的秩为r,则( )。Ar=m时,方程组AX(→)=b(→)有解Br=n时,方程组AX(→)=b(→)有唯一解Cm=n时,方程组AX(→)=b(→)有唯一解Dr<n时,方程组AX(→)=b(→)有无穷多解
填空题设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX(→)=0(→)的通解为____。