两个n阶实对称矩阵合同当且仅当它们等价。

两个n阶实对称矩阵合同当且仅当它们等价。


参考答案和解析
错误

相关考题:

可对角化的矩阵是____。 A.实对称阵B.有n个相异特征值的n阶阵C.有n个线性无关的特征向量的n阶方阵

两个正规式等价,当且仅当它们所描述的正规集相同。()

设A是n阶实对称矩阵,则A有n个()特征值.

n阶正交矩阵的乘积是()矩阵。 A、单位B、对称C、实D、正交

设A,B为,N阶实对称矩阵,则A与B合同的充分必要条件是().A.r(A)=r(B)B.|A|=|B|C.A~BD.A,B与同一个实对称矩阵合同

N阶实对称矩阵A正定的充分必要条件是().A.A无负特征值B.A是满秩矩阵C.A的每个特征值都是单值D.A^-1是正定矩阵

设A是一个n阶矩阵,那么是对称矩阵的是( ).

设n阶矩阵A与对角矩阵相似,则().A.A的n个特征值都是单值B.A是可逆矩阵C.A存在n个线性无关的特征向量D.A一定为n阶实对称矩阵

n阶实对称矩阵A为正定矩阵,则下列不成立的是( )。A.所有k级子式为正(k=1,2,…,n)B.A的所有特征值非负C.D.秩(A)=n

设N阶矩阵A与对角矩阵合同,则A是().A.可逆矩阵B.实对称矩阵C.正定矩阵D.正交矩阵

设矩阵A,B,C均为n阶矩阵,若AB=C,且B可逆,则( )A.矩阵C的行向量组与矩阵A的行向量组等价B.矩阵C的列向量组与矩阵A的列向量组等价C.矩阵C的行向量组与矩阵B的行向量组等价D.矩阵C的行向量组与矩阵B的列向量组等价

设n阶矩阵A与B等价, 则必须

设A1,A2分别为m阶,n阶可逆矩阵,分块矩阵.证明:A可逆,且

设A,B都是N阶对称矩阵,证明AB是对称矩阵的充分必要条件是.AB=BA

设A为n阶对称矩阵,k为常数.试证kA仍为对称矩阵.

设A为m阶实对称矩阵且正定,B为m×n实矩阵,B^T为B的转置矩阵,试证:B^TAB为正定矩阵的充分必要条件是B的秩r(B)=n,

设n阶实对称矩阵A的秩为r,且满足,求 ①二次型的标准形; ②行列式的值,其中E为单位矩阵

已知n阶实对称矩阵Α≈B,证明:对于任何自然数k,

设A,B为同阶矩阵,且.证明当且仅当

证明;对任意的n阶矩阵A,为对称矩阵,而为反对称矩阵.

设n阶矩阵A可逆,且detA=a,求,.

设A为四阶实对称矩阵,且A^2+A=O.若A的秩为3,则A相似于

设A,B,C均为n阶矩阵,若AB=C,且B可逆,则 A.A矩阵C的行向量组与矩阵A的行向量组等价B.矩阵C的列向量组与矩阵A的列向量组等价C.矩阵C的行向量组与矩阵B的行向量组等价D.矩阵C的列向量组与矩阵B的列向量组等价

设A为三阶实对称矩阵,A的秩为2,且  (Ⅰ)求A的所有特征值与特征向量;  (Ⅱ)求矩阵A.

设A为3阶实对称矩阵,A的秩为2,且. (Ⅰ)求A的特征值与特征向量; (Ⅱ)求矩阵A

n阶实对称矩阵A为正定矩阵,则下列不成立的是()。A、所有k级子式为正(k=1,2,…,n)B、A的所有特征值非负C、秩(A)=n

单选题设n阶矩阵A与B等价,则必有(  )。A当|A|=a(a≠0)时,|B|=aB当|A|=a(a≠0)时,|B|=-aC当|A|≠0时,|B|=0D当|A|=0时,|B|=0

问答题设n阶矩阵A有n个两两正交的特征向量,证明A是对称矩阵。