如图,由四个全等的直角三角形拼成一个大正方形,每个三角形的面积都是1,且两直角边之比大于等于2,则这个大正方形的面积至少是()。A.4B.5C.6D.7
如图,由四个全等的直角三角形拼成一个大正方形,每个三角形的面积都是1,且两直角边之比大于等于2,则这个大正方形的面积至少是()。
A.4
B.5
C.6
D.7
B.5
C.6
D.7
参考解析
解析:第一步,本题考查几何问题,属于平面几何类。
第二步,根据图形可知大正方形面积=4个三角形面积+小正方形面积=4+小正方形面积,小正方形边长=三角形长直角边-短直角边,那么当三角形两直角边差最小时,可得大正方形面积最小,由于两直角边之比大于等于2,即当两直角边之比等于2时,大正方形面积最小。
第三步,设三角形短直角边为a,则长直角边为2a,三角形的面积为
解得a=1,所以小正方形的面积为(2a-a)2=1×1=1,故大正方形面积至少为4+1=5。
因此,选择B选项。
第二步,根据图形可知大正方形面积=4个三角形面积+小正方形面积=4+小正方形面积,小正方形边长=三角形长直角边-短直角边,那么当三角形两直角边差最小时,可得大正方形面积最小,由于两直角边之比大于等于2,即当两直角边之比等于2时,大正方形面积最小。
第三步,设三角形短直角边为a,则长直角边为2a,三角形的面积为
解得a=1,所以小正方形的面积为(2a-a)2=1×1=1,故大正方形面积至少为4+1=5。
因此,选择B选项。
相关考题:
如图,甲、乙、丙、丁四个长方形拼成正方形 EFGH,中间阴影为正方形。已知,甲、乙、丙、丁四个长方形面积的和是 32cm2,四边形 ABCD 的面积是 20cm2。问甲、乙、丙、丁四个长方形周长的总和是( )。(图略)A.32cmB.56cmC.48cmD.68cm
在大小相等的两个等腰直角三角形中,按不同的方式各内接一个正方形(如图A、B所示)。如果图B中的内接正方形的面积是144,那么图A中的内接正方形的面积是多少?A. 225B. 162C. 128D. 98
如,正方形ABCD由四个相同的长方形和一个小正方形拼成,则能确定小正方形的面积(1)已知正方形ABCD的面积(2)已知长方形的长宽之比A.条件(1)充分,但条件(2)不充分B.条件(2)充分,但条件(1)不充分C.条件(1)和条件(2)单独都不充分,但条件(1)和条件(2)联合起来充分D.条件(1)充分,条件(2)也充分E.条件(1)和条件(2)单独都不充分,条件(1)和条件(2)联合起来也不充分
已知如图,直角三角形ABC的两直角边AC = 8厘米,BC=6厘米,以AC、BC为边向三角形外分别作正方形ACDE和BCFG,再以AB为边向上作正方形ABMN,其中N点落在DE上,BM交CF于点了,则阴影部分的总面积等于( )。A. 46平方厘米 B. 38平方厘米C. 40平方厘米 D. 48平方厘米
单选题将一个正方形延相邻两边的中点截去一个等腰三角形,剩余部分面积是原正方形面积的()倍。A7/8B3/4C2/3D1/2