曲线y=sinx在[-π,π]上与x轴所围成的图形的面积为( )。A.2B.0C.4D.6

曲线y=sinx在[-π,π]上与x轴所围成的图形的面积为( )。

A.2
B.0
C.4
D.6

参考解析

解析:

相关考题:

曲线y=x2与y=4—x2所围成的图形的面积为_________.

求由曲线y=ex,y=e-x及x=1所围成的平面图形的面积以及此平面图形绕x轴旋转一周所成的旋转体的体积Vx.

在区间(0,2π)上,曲线y=sinx与y=cosx之间所围图形的面积是( )。A.B.C.D.

由曲线和直线x=1,x=2,y= -1围成的图形,绕直线:y= -1旋转所得旋转体的体积为:

在区间[0,2π]上,曲线:y=sinx与y=cosx之间所围图形的面积是:

已知函数(x)=-x2+2x.①求曲线y=(x)与x轴所围成的平面图形面积S;②求①的平面图形绕x轴旋转一周所得旋转体体积Vx.

①求由曲线y=x,y=1/x,x=2与y=0所围成的平面图形的面积S;②求①中的平面图形绕x轴旋转一周所得旋转体的体积V.

①求曲线y=x2(x≥0),y=1与x=0所围成的平面图形的面积S:②求①中的平面图形绕Y轴旋转一周所得旋转体的体积Vy.

①求曲线y=ex及直线x=1,x=0,y=0所围成的图形D的面积S:②求平面图形D绕x轴旋转一周所成旋转体的体积Vx.

曲线y=1-x2与x轴所围成的平面图形的面积S=()·A.2B.4/3C.1D.2/3

求曲线y=x2与直线y=0,x=1所围成的平面图形绕x轴旋转一周所得旋转体的体积.

①求在区间(0,π)上的曲线y=sinx与x轴所围成图形的面积S;②求①中的平面图形绕x轴旋转一周所得旋转体的体积Vx.

曲线Y=x2,x=0,x=2,Y=0所围成的图形的面积为(  ).

已知曲线的方程为 ,则曲线 与x 轴围成的平面图形的面积为

设f(x)为区间[a,b]上的连续函数,则曲线y=f(x)与直线x=a,x=b,y=0所围成的封闭图形的面积为( ).《》( )

曲线y=sinx(0≤x≤π/2)与直线x=π/2,y=0围成的平面图形绕x轴旋转产生的旋转体体积是()。

曲线y=sinx在[-π,π]上与x轴所围成的图形的面积为( )。A. 2 B. 0 C. 4 D. 6

求由曲线y=x2(x≥0),直线y=1及Y轴围成的平面图形的面积·

设D为曲线y=x2与直线y=x所围成的有界平面图形,求D绕x轴旋转一周所得旋转体的体积V.?

已知曲线y=ex与直线y=c(c>1)及Y轴所围成的平面图形的面积为1,求实数c的值。

曲线y=sinx(0≤x≤π/2)与直线x=π/2,y=0围成一个平面图形。此平面图形绕x轴旋转产生的旋转体的体积是:()A、π2/4B、π/2C、π2/4+1D、π/2+1

曲线y=cosx在[0,2π]上与x轴所围成图形的面积是:()A、0B、4C、2D、1

曲线y=sinx在[-π,π]上与x轴所围成的图形的面积为()。A、2B、0C、4D、6

单选题曲线y=sinx(0≤x≤π/2)与直线x=π/2,y=0围成一个平面图形。此平面图形绕x轴旋转产生的旋转体的体积是:()Aπ2/4Bπ/2Cπ2/4+1Dπ/2+1

单选题曲线y=cosx在[0,2π]上与x轴所围成图形的面积是:()A0B4C2D1

单选题第一象限内曲线y2+6x=36和坐标轴所围成的图形绕x轴旋转所生成的旋转体的体积为().A36πB54πC72πD108π

单选题曲线y-=cosx在[0,2π]上与x轴所围成图形的面积是:()A0B4C2D1