求由曲线y=ex,y=e-x及x=1所围成的平面图形的面积以及此平面图形绕x轴旋转一周所成的旋转体的体积Vx.
求由曲线y=ex,y=e-x及x=1所围成的平面图形的面积以及此平面图形绕x轴旋转一周所成的旋转体的体积Vx.
相关考题:
设曲线y=f(x)上任一点(x,y)处的切线斜率为(y/x)+x2,且该曲线经过点(1,1/2)。(1)求函数y=f(x);(2)求由曲线y= f(x),y=O,x=1所围图形绕x轴旋转一周所得旋转体的体积V。
设曲线y=4-x2(x≥0)与x轴,y轴及直线x=4所围成的平面图形为D(如图1—3—2中阴影部分所示).图1—3—1图1—3—2①求D的面积S;②求图中x轴上方的阴影部分绕y轴旋转一周所得旋转体的体积Vy.
(1)求直线y=1,曲线L以及y轴围成的平面图形绕y轴旋转一周所得到的的旋转体体积A;(2)假定曲线L绕y轴旋转一周所得到的旋转曲面为S。该旋转曲面作为容器盛满水(水的质量密度(单位体积水的重力)等于1),如果将其中的水抽完,求外力作功W.
曲线y=sinx(0≤x≤π/2)与直线x=π/2,y=0围成一个平面图形。此平面图形绕x轴旋转产生的旋转体的体积是:()A、π2/4B、π/2C、π2/4+1D、π/2+1