设总体X的密度函数为f(x)=,θ>0为未知参数,a>0为已知参数,求θ的极大似然估计量.

设总体X的密度函数为f(x)=,θ>0为未知参数,a>0为已知参数,求θ的极大似然估计量.


参考解析

解析:

相关考题:

已知总体X服从参数为λ的指数分布,设X1,X2,…,Xn是子样观察值,求λ的极大似然估计。

设总体X服从参数为λ的泊松分布,其中λ未知.X1,…,Xn是取自总体X的样本,则λ的最大似然估计是( ).A.B.C.SD.

设总体X的概率密度为未知参数,X1,X2, ...Xn是来自总体X的样本,则θ的矩估计量是:

设总体X的概率密度为而x1,x2,...,xn 是来自总体的样本值,则未知参数θ的最大似然估计值是:

设总体X的概率密度为f(x)=其中θ>-1是未知参数,X1,X2,...Xn是来自总体X的样本,则θ的矩估计量是:

设某元件的使用寿命X的概率密度为f(x;θ)=,其中θ>0为未知参数,又设(x1,x2,…,xn)是样本(X1,X2,…,Xn)的观察值,求参数θ的最大似然估计值.

设总体X的分布函数为    其中未知参数β>1,X1,X2,…,Xn为来自总体X的简单随机样本,求:  (Ⅰ)β的矩估计量;(Ⅱ)β的最大似然估计量.

设总体X的分布律为P(X=k)P(k=1,2,…),其中p是未知参数,X1,X2,…,Kn为来自总体的简单随机样本,求参数p的矩估计量和极大似然估计量.

设总体X的密度函数为f(x)=,X1,X2,…,Xn为来自总体X的简单随机样本,求参数θ的最大似然估计量.

设总体X的密度函数为f(x)=,(X1,X2,…,Xn)为来自总体X的简单随机样本.(1)求θ的矩估计量θ;(2)求D(θ).

设总体X~U[0,θ],其中θ>0,求θ的极大似然估计量,判断其是否是θ的无偏估计量.

设总体X的概率密度为f(x)=,其中θ>-1是未知参数,X1,  X2,…,Xn是来自总体X的一个容量为n的简单随机样本,分别用矩估计法和最大似然估计法求参数θ的估计量.

设总体X的概率分布为    其中θ(0)是未知参数,利用总体X的如下样本值3,1,3,0,3,1,2,3,求θ的矩估计值和最大似然估计值,

设总体X的概率密度为f(x)=,其中未知参数θ>0,设X1,X2,…,X是来自总体X的简单样本.(1)求θ的最大似然估计量;(2)该估计量是否是无偏估计量?说明理由.

设某种元件的使用寿命X的概率密度为    其中θ>0为未知参数.又设x1,x2,…,xn是X的一组样本观测值,求参数θ的最大似然估计值.

设总体X的概率分布为是未知参数,用样本值3,1,3,0,3,1,2,3求θ的矩估计值和最大似然估计值,

设总体X的分布律为X~(θ为正参数),-1,2,-1,1,2为样本观察值,则θ的极大似然估计值为_______.

设总体X的分布函数为其中θ是未知参数且大于零.X1,X2,…,Xn为来自总体X的简单随机样本.  (Ⅰ)求EX与EX^2;  (Ⅱ)求θ的最大似然估计量.  (Ⅲ)是否存在实数a,使得对任何ε>0,都有?

设总体X的概率密度为  其中参数λ(λ>0)未知,X1,X2,…,Xn是来自总体X的简单随机样本.(Ⅰ)求参数λ的矩估计量;(Ⅱ)求参数λ的最大似然估计量.

设总体X的概率密度为    其中μ是已知参数,σ>0是未知参数,A是常数.X1,X2,…,Xn是来自总体X的简单随机样本.  (Ⅰ)求A;  (Ⅱ)求σ的最大似然估计量.

设总体X的概率密度为    其中θ为未知参数且大于零.X1,X2,…,Xn为来自总体X的简单随机样本.  (Ⅰ)求θ的矩估计量;  (Ⅱ)求θ的最大似然估计量.

设总体X的概率密度为    其中θ为未知参数,X1,X2,…,Xn,为来自该总体的简单随机样本.  (Ⅰ)求θ的矩估计量;  (Ⅱ)求θ的最大似然估计量.

设总体X的概率分布为  其中参数θ∈(0,1)未知.以Ni表示来自总体X的简单随机样本(样本容量为n)中等于i的个数(i=1,2,3).试求常数α1,α2,α3,使为θ的无偏估计量,并求T的方差.

设总体X的概率密度为其中θ∈(0,+∞)为未知参数,X1,X2,X3为来自总体X的简单随机样本,令T=max(X1,X2,X3).  (Ⅰ)求T的概率密度;  (Ⅱ)确定a,使得aT为θ的无偏估计.

设函数,已知函数f(x)在x=0处可微,求

设总体X服从参数为λ的泊松分布,其中λ未知.X1,…,X是取自总体X的样本,则A的最大似然估计是().A、XB、S2C、SD、2

单选题设总体X服从参数为λ的泊松分布,其中λ未知.X1,…,X是取自总体X的样本,则A的最大似然估计是().AXBS2CSD2