设总体X的概率密度为f(x)=,其中未知参数θ>0,设X1,X2,…,X是来自总体X的简单样本.(1)求θ的最大似然估计量;(2)该估计量是否是无偏估计量?说明理由.

设总体X的概率密度为f(x)=,其中未知参数θ>0,设X1,X2,…,X是来自总体X的简单样本.(1)求θ的最大似然估计量;(2)该估计量是否是无偏估计量?说明理由.


参考解析

解析:

相关考题:

从正态总体X~N(0,σ^2)中抽取简单随机样本X1,X2,…,Xn,则可作为参数σ^2的无偏估计量的是().

设总体X的概率密度为未知参数,X1,X2, ...Xn是来自总体X的样本,则θ的矩估计量是:

设总体X的概率密度为而x1,x2,...,xn 是来自总体的样本值,则未知参数θ的最大似然估计值是:

设总体X的概率密度为f(x)=其中θ>-1是未知参数,X1,X2,...Xn是来自总体X的样本,则θ的矩估计量是:

设总体X在区间(0,θ)内服从均匀分布,X1,X2,X3是来自总体的简单随机样本.证明:与都是参数θ的无偏估计量,试比较其有效性.

设某元件的使用寿命X的概率密度为f(x;θ)=,其中θ>0为未知参数,又设(x1,x2,…,xn)是样本(X1,X2,…,Xn)的观察值,求参数θ的最大似然估计值.

设总体X的分布函数为    其中未知参数β>1,X1,X2,…,Xn为来自总体X的简单随机样本,求:  (Ⅰ)β的矩估计量;(Ⅱ)β的最大似然估计量.

设总体X的分布律为P(X=k)P(k=1,2,…),其中p是未知参数,X1,X2,…,Kn为来自总体的简单随机样本,求参数p的矩估计量和极大似然估计量.

设总体X的密度函数为f(x)=,θ>0为未知参数,a>0为已知参数,求θ的极大似然估计量.

设总体X,Y相互独立且都服从N(μ,σ^2)分布,(X1,X2,…,Xn)与(Y1,Y1,…,yn)分别为来自总体X,Y的简单随机样本,证明:为参数σ^2的无偏估计量,

设总体X的分布律为P(X=i)=(i=1,2,…,θ,X1,X2,…,Xn为来自总体的简单随机样本,则θ的矩估计量为_______(其中θ为正整数).

设总体X的密度函数为f(x)=,X1,X2,…,Xn为来自总体X的简单随机样本,求参数θ的最大似然估计量.

设总体X~U(θ,θ),X1,X2,…,Xn是来自总体X的样本,求θ1,θ2的矩估计和最大似然估计.

设总体X的密度函数为f(x)=,(X1,X2,…,Xn)为来自总体X的简单随机样本.(1)求θ的矩估计量θ;(2)求D(θ).

设总体X~U[0,θ],其中θ>0,求θ的极大似然估计量,判断其是否是θ的无偏估计量.

设总体X的概率密度为f(x)=,其中θ>-1是未知参数,X1,  X2,…,Xn是来自总体X的一个容量为n的简单随机样本,分别用矩估计法和最大似然估计法求参数θ的估计量.

设总体X的概率密度为其中θ是未知参数,X1,X2,…,Xn为来自总体X的简单随机样本.若是θ的无偏估计,则c=______.

设某种元件的使用寿命X的概率密度为    其中θ>0为未知参数.又设x1,x2,…,xn是X的一组样本观测值,求参数θ的最大似然估计值.

设总体X的分布函数为其中θ是未知参数且大于零.X1,X2,…,Xn为来自总体X的简单随机样本.  (Ⅰ)求EX与EX^2;  (Ⅱ)求θ的最大似然估计量.  (Ⅲ)是否存在实数a,使得对任何ε>0,都有?

设总体X的概率密度为  其中参数λ(λ>0)未知,X1,X2,…,Xn是来自总体X的简单随机样本.(Ⅰ)求参数λ的矩估计量;(Ⅱ)求参数λ的最大似然估计量.

设总体X的概率密度为    其中μ是已知参数,σ>0是未知参数,A是常数.X1,X2,…,Xn是来自总体X的简单随机样本.  (Ⅰ)求A;  (Ⅱ)求σ的最大似然估计量.

设总体X的概率密度为    其中θ为未知参数且大于零.X1,X2,…,Xn为来自总体X的简单随机样本.  (Ⅰ)求θ的矩估计量;  (Ⅱ)求θ的最大似然估计量.

设总体X的概率密度为    其中θ为未知参数,X1,X2,…,Xn,为来自该总体的简单随机样本.  (Ⅰ)求θ的矩估计量;  (Ⅱ)求θ的最大似然估计量.

设总体X的概率分布为  其中参数θ∈(0,1)未知.以Ni表示来自总体X的简单随机样本(样本容量为n)中等于i的个数(i=1,2,3).试求常数α1,α2,α3,使为θ的无偏估计量,并求T的方差.

设总体X的概率密度为其中θ∈(0,+∞)为未知参数,X1,X2,X3为来自总体X的简单随机样本,令T=max(X1,X2,X3).  (Ⅰ)求T的概率密度;  (Ⅱ)确定a,使得aT为θ的无偏估计.

设总体X的均值μ及方差σ2都存在,且有σ2>0,但μ,σ2均未知,又设X1,X2,…,Xn是来自总体x的样本,是μ,σ2的矩估计量,则有( )。

设总体X的数学期望为μ,X1,X2,...,Xn为来自X的样本,则下列结论中正确的是()A、X1是μ的无偏估计量.B、X1是μ的极大似然估计量.C、X1是μ的相合(一致)估计量.D、X1不是μ的估计量.