设总体X的概率密度为f(x)=,其中未知参数θ>0,设X1,X2,…,X是来自总体X的简单样本.(1)求θ的最大似然估计量;(2)该估计量是否是无偏估计量?说明理由.
设总体X的概率密度为f(x)=,其中未知参数θ>0,设X1,X2,…,X是来自总体X的简单样本.(1)求θ的最大似然估计量;(2)该估计量是否是无偏估计量?说明理由.
参考解析
解析:
相关考题:
设总体X的分布函数为其中θ是未知参数且大于零.X1,X2,…,Xn为来自总体X的简单随机样本. (Ⅰ)求EX与EX^2; (Ⅱ)求θ的最大似然估计量. (Ⅲ)是否存在实数a,使得对任何ε>0,都有?
设总体X的概率分布为 其中参数θ∈(0,1)未知.以Ni表示来自总体X的简单随机样本(样本容量为n)中等于i的个数(i=1,2,3).试求常数α1,α2,α3,使为θ的无偏估计量,并求T的方差.
设总体X的概率密度为其中θ∈(0,+∞)为未知参数,X1,X2,X3为来自总体X的简单随机样本,令T=max(X1,X2,X3). (Ⅰ)求T的概率密度; (Ⅱ)确定a,使得aT为θ的无偏估计.
设总体X的数学期望为μ,X1,X2,...,Xn为来自X的样本,则下列结论中正确的是()A、X1是μ的无偏估计量.B、X1是μ的极大似然估计量.C、X1是μ的相合(一致)估计量.D、X1不是μ的估计量.