设P为可逆矩阵,A=P^TP.证明:A是正定矩阵.

设P为可逆矩阵,A=P^TP.证明:A是正定矩阵.


参考解析

解析:

相关考题:

n阶对称矩阵A为正定矩阵的充分必要条件是()。 A、∣A∣0B、存在n阶矩阵P,使得A=PTPC、负惯性指数为0D、各阶顺序主子式均为正数

设A,B是正定实对称矩阵,则().A. AB,A+B一定都是正定实对称矩阵B. AB是正定实对称矩阵,A+B不是正定实对称矩阵C. A+B是正定实对称矩阵,AB不一定是正定实对称矩阵D. AB必不是正定实对称矩阵,A+B必是正定实对称矩阵

设A,B为正定矩阵,C是可逆矩阵,下列矩阵不是正定矩阵的是().

设A,B为同阶可逆矩阵,则( )。A.AB=BAB.C.D.存在可逆矩阵P和Q,使PAQ=B

设N阶矩阵A与对角矩阵合同,则A是().A.可逆矩阵B.实对称矩阵C.正定矩阵D.正交矩阵

设A为n阶实对称矩阵,下列结论不正确的是().A.矩阵A与单位矩阵E合同B.矩阵A的特征值都是实数C.存在可逆矩阵P,使P^-1AP为对角阵D.存在正交阵Q,使Q^TAQ为对角阵

设A是3阶矩阵,P=(a1,a2,a3)是3阶可逆矩阵,若矩阵Q=(a1,a2,a3),则Q-1AQ=

设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:(A) Pα (B) P-1α (C) PTa (D) P(-1)Ta

设A是n阶正定矩阵,证明:|E+A|>1.

设Α是正定矩阵,B是实对称矩阵,证明ΑB可对角化

设矩阵相似于矩阵. (1)求a,b的值;(2)求可逆矩阵P,使为对角阵

设A为n阶正定矩阵,证明:对任意的可逆矩阵P,P^TAP为正定矩阵.

设A和B都是mn实矩阵,满足r(A+B)=n,证明正定

设U为可逆矩阵, , 证明为正定二次型

设A,B为n阶正定矩阵.证明:A+B为正定矩阵.

设A,B,A+B都是可逆矩阵,证明可逆,并求其逆矩阵.

设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.

设A是n阶矩阵,E+A是可逆矩阵,记,若A按足条件,证明是反对称矩阵。

证明对称阵A为正定的充分必要条件是:存在可逆矩阵U,使,即A与单位阵E合同

设A为m阶正定矩阵,B为m×n阶实矩阵.证明:B^SAB正定的充分必要条件是r(B)=n,

设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.

设矩阵A=  (1)已知A的一个特征值为3,试求y;  (2)求可逆矩阵P,使(AP)^T(AP)为对角矩阵.

设A是3阶矩阵,P=(a1,a2,a3)是3阶可逆矩阵,且P-1AP=

设A为3阶矩阵.P为3阶可逆矩阵,且A.B.C.D.

设A是3阶矩阵,P = (α1,α2,α3)是3阶可逆矩阵,且,若矩阵Q=(α2,α1,α3),则Q-1AQ=( )。

设A,B都是n阶矩阵,若有可逆矩阵P使得P-1AP=B,则称矩阵A与矩阵B()。A、等价B、相似C、合同D、正交

单选题设A,B都是n阶矩阵,若有可逆矩阵P使得P-1AP=B,则称矩阵A与矩阵B()。A等价B相似C合同D正交