设A是3阶矩阵,P=(a1,a2,a3)是3阶可逆矩阵,若矩阵Q=(a1,a2,a3),则Q-1AQ=
设A是3阶矩阵,P=(a1,a2,a3)是3阶可逆矩阵,
若矩阵Q=(a1,a2,a3),则Q-1AQ=
若矩阵Q=(a1,a2,a3),则Q-1AQ=
参考解析
解析:提示:当P-1AP=Λ时,P=(a1,a2,a3)中a1,a2,a3的排列满足对应关系,a1对应λ1,a2对应λ2,a3对应λ3,可知a1对应特征值λ1=1,a2对应特征值λ2=2,a3对应特征值λ3=0,由此可
相关考题:
设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:(A) Pα (B) P-1α (C) PTa (D) P(-1)Ta
单选题(2009)设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:()APαBP-1αCPTαD(P-1)Tα