θ是总体的一个待估参数,θL,θU是其对于给定a的1-a的置信下限与置信上限。则1-a置信区间的含义是( )。A.所构造的随机区间[θL,θU]覆盖(盖住)未知参数θ的概率为1 - aB.由于这个随机区间随样本观测值的不同而不同,它有时覆盖住了参数θ,有时则没有覆盖参数θC.用这种方法做区间估计时,不能覆盖参数θ的机率相当小D.如果P(θL) =P(θ>θU)=a/2,则称这种置信区间为等尾置信区间E.正态总体参数的置信区间是等尾置信区间,而比例p的置信区间不是等尾置信区间

θ是总体的一个待估参数,θL,θU是其对于给定a的1-a的置信下限与置信上限。则1-a置信区间的含义是( )。
A.所构造的随机区间[θL,θU]覆盖(盖住)未知参数θ的概率为1 - a
B.由于这个随机区间随样本观测值的不同而不同,它有时覆盖住了参数θ,有时则没有覆盖参数θ
C.用这种方法做区间估计时,不能覆盖参数θ的机率相当小
D.如果P(θL) =P(θ>θU)=a/2,则称这种置信区间为等尾置信区间
E.正态总体参数的置信区间是等尾置信区间,而比例p的置信区间不是等尾置信区间


参考解析

解析:C项,用这种方法做区间估计时,100次中大约有100(1-a)个区间能覆盖未知参数,不能说机率是大还是小,需要根据a的具体情况来确定;E项,正态总体参数的置信区间及比例p的置信区间都是等尾置信区间。

相关考题:

设θ是总体的一个待估参数,现从总体中抽取容量为n的一个样本,从中得到参数θ的一个置信水平为90%的置信区间[θL,θU],下列提法不正确的是________。A.置信区间[θL,θU]是唯一的B.100次中大约有90个区间能包含真值θC.置信区间[θL,θU]不是唯一的D.100次中大约有10个区间能包含真值θ

设θ是总体的一个待估参数,现从总体中抽取容量为n的一个样本,从中得到参数θ的一个置信度为95%的置信区间[θL,θU],下列说法正确的是( )。A.置信区间[θL,θU]是唯一的B.100个置信区间中约有95个区间能包含真值θC.置信区间[θL,θU]是随机区间D.100个置信区间中约有5个区间能包含真值θE.100个置信区间中约有5个区间不包含真值θ

以下关于区间估计和置信区间说法正确的是:() A.置信区间与显著性水平α的取值有关,同一次抽样,α越小,则置信区间越窄B.置信区间与抽样的样本量有关,同样的α,样本量越大,则置信区间越窄C.α为置信水平,构造一个置信水平为95%的置信区间,则该区间包含总体参数真值的概率为95%D.如果重复构造100个置信水平为95%的置信区间,大约有95个包含总体真值

总体率(1-a)置信区间指 A、求得的区间包含总体率的可能性为(1-a)B、计算样本率抽样误差的大小C、求得总体率的波动范围D、估计样本率的大小E、估计样本含量

设θ是总体的一个待估参数,现从总体中抽取容量为n的一个样本,从中得到参数θ的一个置A.B.100个置信区间中约有90个区间能包含真值θC.100个置信区间中约有5个区间能包含真值0D.E.100个置信区间中约有90个区间不能包含真值θ

小样本情况下,总体服从正态分布,总体方差未知,总体均值在置信水平(1-a)下的置信区间为( )

已知总体服从正态分布,且总体标准差σ,从总体中抽取样本容量为n的产品,测得其样本均值为x,在置信水平为1-a=95%下,总体均值的置信区间为( )

听力原文:构造的随机区间[θL;θU]是θ的置信水平为99%的置信区间,它的含义是指所构造的[θL,θU]区间覆盖住未知参数θ的概率为99%。参数θ的一个置信度为99%的置信区间[θL,θU),则下列说法正确的是( )。A.置信区间[θL,θU]是一个随机区间B.在100个这样的置信区间中,约有1个区间包含真值θC.置信区间[θL,θU]不是随机区间D.在100个这样的置信区间中,约有99个区间包含真值θE.以上说法都不正确

关于置信度为95%的置信区间的说法正确的是( )。A.置信区间为[463.63,502.37]B.置信区间为[494.90,501.10]C.置信区间是以X为中心,宽度是[*]D.对于较大的α,置信区间则较窄;对于较小的α,置信区间则较宽

正态总体标准差σ的1-a置信区间为( )。(μ未知)。

总体X~N(μ,5^2),则总体参数μ的置信度为1-a的置信区间的长度().A.与α无关B.随α的增加而增加C.随α的增大而减少D.与α有关但与α的增减性无关

设总体X~N(μ,σ^2),其中σ^2未知,^2s=,样本容量n,则参数μ的置信度为1-a的置信区间为().

设总体X~N(u,σ2),u与σ2均未知,x1,x2,...,x9为其样本,样本方差,则u的置信度为0. 9的置信区间是:

设[θL, θU]是θ的置信水平为1-a的置信区间,则有( )。A.a愈大,置信区间长度愈短 B.a愈大,置信区间长度愈长C.a愈小,置信区间包含θ的概率愈大 D.a愈小,置信区间包含θ的概率愈小E.置信区间长度与a大小无关

总体为正态分布,σ2未知,则总体均值的1-a置信区间是()。

正态总体参数均值、方差、标准差的1-a置信区间为()。

在大样本条件下,若np≥5,且n(1-p)≥5,样本比例在置信水平(1-a)下的置信区间为( )。

当σ2已知时,总体均值μ在1-a置信水平下的置信区间为( )。

总体率(1-a)置信区间指()。A、求得的区间包含总体率的可能性为(1-A.B、计算样本率抽样误差的大小C、求得总体率的波动范围D、估计样本率的大小E、估计样本含量

关于参数估计的正确说法是()。A、对母体参数的点估计使用一个统计的单一值去估计一个位置参数的数值。B、在给定置信度(1-α)的情况下,对未知参数的置信上限和置信下限做出估计的方法是双侧区间估计,又称双边估计。C、在给定置信度(1-α)的情况下,只对未知数的置信下限或置信上限做出估计的方法是单侧区间估计,又称单边估计。D、以上都对

对总体参数进行区间估计,则下列结论正确的是()A、置信度越大,置信区间越长B、置信度越大,置信区间越短C、置信度越小,置信区间越长D、置信度大小与置信区间长度无关

置信水平(1-α)是()A、置信区间估计正确的概率B、置信区间估计错误的概率C、保证置信区间包含总体参数的概率D、保证总体参数落入置信区间的概率

置信度1-α是指总体参数落在置信区间的概率是1-α。

对正态总体均值进行区间估计时,其它条件不变,置信水平1-α越小,则置信上限与置信下限的差()A、越大B、越小C、不变

置信区间CI是随机的,总体参数是固定的。

多选题θ是总体的一个待估参数,θL,θU是其对于给定α的1-α的置信下限与置信上限。则1-α置信区间的含义是(  )。A所构造的随机区间[θL,θU]覆盖(盖住)未知参数θ的概率为1-αB由于这个随机区间随样本观测值的不同而不同,它有时覆盖住了参数θ,有时则没有覆盖参数θC用这种方法做区间估计时,不能覆盖参数θ的机率相当小D如果P(θ<θL)=P(θ>θU)=α/2,则称这种置信区间为等尾置信区间E正态总体参数的置信区间是等尾置信区间,而比例p的置信区间不是等尾置信区间

多选题设[θL,θU]是θ的置信水平为1-α的置信区间,则有(  )。[2006年真题]Aα愈大,置信区间长度愈短Bα愈大,置信区间长度愈长Cα愈小,置信区间包含θ的概率愈大Dα愈小,置信区间包含θ的概率愈小E置信区间长度与α大小无关