已知函数f(x)在x=1处可导,则f'(1)等于:A. 2 B. 1
已知函数f(x)在x=1处可导,则f'(1)等于:
A. 2 B. 1
A. 2 B. 1
参考解析
解析:解:可利用函数在一点x0可导的定义,通过计算得到最后结果。
选D。
选D。
相关考题:
设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )A.f(a)=0且f′(a)=0B.f(a)=0且f′(a)≠0C.f(a)>0且f′(a)>D.f(a)<0且f′(a)<
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.
下列命题中,正确的是( ).A.单调函数的导函数必定为单调函数B.设f(x)为单调函数,则f(x)也为单调函数C.设f(x)在(a,b)内只有一个驻点xo,则此xo必为f(x)的极值点D.设f(x)在(a,b)内可导且只有一个极值点xo,f(xo)=0
单选题设f(x)在(-∞,+∞)内可导,且对任意x2>x1,都有f(x2)>f(x1),则正确的结论是( )。A对任意x,f′(x)>0B对任意x,f′(x)≤0C函数-f(-x)单调增加D函数f(-x)单调增加
单选题设函数f(x)在区间[1,+∞)内二阶可导,且满足条件f(1)=f′(1)=0,x>1时f″(x)<0,则g(x)=f(x)/x在(1,+∞)内( )。A曲线是向上凹的B曲线是向上凸的C单调减少D单调增加
问答题设函数f(x),g(x)二次可导,满足函数方程f(x)g(x)=1,又f′(x)≠0,g′(x)≠0,则f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。