已知f(x)是二阶可导的函数,
已知f(x)是二阶可导的函数,
参考解析
解析:正确答案是D。
相关考题:
设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )A.f(a)=0且f′(a)=0B.f(a)=0且f′(a)≠0C.f(a)>0且f′(a)>D.f(a)<0且f′(a)<
已知f(x)是二阶可导的函数,y=e2f(x),A. e2f(x) B. e2f(x)f''(x)C. e2f(x)[2f'(x)] D.2e2f(x) {2[f'(x)]2+f''(x)}
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.
已知f(x)是二阶可导的函数,y=e2f(x),则dy2/dx2为:A. e2f(x)B. e2f(x)f''(x)C. e2f(x)[2f'(x)]D.2e2f(x) {2[f'(x)]2+f''(x)}
函数y=f(x)在(a,6)内二阶可导,且f′(x)>0,f″(x)<0,则曲线y=f(x)在(a,6)内( ).《》( )A.单调增加且为凹B.单调增加且为凸C.单调减少且为凹D.单调减少且为凸
问答题设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,且存在相等的最大值。若f(a)=g(a),f(b)=g(b),证明: (1)存在η∈(a,b)使f(η)=g(η); (2)存在ξ∈(a,b)使f″(ξ)=g″(ξ)。
单选题设函数f(x)在区间[1,+∞)内二阶可导,且满足条件f(1)=f′(1)=0,x>1时f″(x)<0,则g(x)=f(x)/x在(1,+∞)内( )。A曲线是向上凹的B曲线是向上凸的C单调减少D单调增加
单选题可微函数若是单调增的,则()。A函数大于0B其二阶导函数大于0C其导函数大于0D其二阶导函数小于0