设函数f(x)在x=1处可导,且f'(1)=0,若f"(1)>0,则f(1)是()A.极大值B.极小值C.不是极值D.是拐点

设函数f(x)在x=1处可导,且f'(1)=0,若f"(1)>0,则f(1)是()

A.极大值
B.极小值
C.不是极值
D.是拐点

参考解析

解析:由极值的第二充分条件可知,应选B.

相关考题:

设f(x)在[0,1]上可导,且满足f(1)=∫01xf(x)dx,证明:必有一点ξ∈(0,1),使得ξf(ξ)+f(ξ)=0.

设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )A.f(a)=0且f′(a)=0B.f(a)=0且f′(a)≠0C.f(a)>0且f′(a)>D.f(a)<0且f′(a)<

设函数若f(x)在x=0处可导,则a的值是:A. 1 B. 2 C. 0 D. -1

设f(x)在闭区间[0,1]上连续,在(0,1)内可导,且f(0)=0,

设f(x)二阶可导,f(0)= f(1),且f(x)在[0,1]上的最小值为—1.证明:

设函数f(x)可导,且f(x)f'(x)>0,则 A.Af(1)>f(-1)B.f(1)C.|f(1)|>|f(-1)|D.|f(1)|

设函数f(x)具有二阶连续导数,且f(x)>0,f'(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是 A.Af(0)>1,f"(0)>0B.f(0)>1,f"(0)C.f(0)0D.f(0)

设f(x)是周期为4的可导奇函数,且f'(x)=2(x-1),x∈[0,2],则f(7)=________.

(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.

若函数f(x)在[0,1]上黎曼可积,则f(x)在[0,1]上( )。 A.连续B.单调C.可导D.有界

设f(x)是R上的可导函数,且f(x)>0。若f′(x)-3x---2f(x)=0,且f(0)=1,求f(x)。

若f(x)为可导函数,且已知f(0) = 0,f'(0) = 2,则的值为()。A. 0 B. 1 C. 2 D.不存在

设函数f(x)在(0,1)内可导,f'(x)>0,则f(x)在(0,1)内(  )A.单调减少B.单调增加C.为常量D.不为常量,也不单调

设偶函数f(x)在区间(-1,1)内具有二阶导数,且f″(0)=f′(0)+1,则f(0)为f(x)的一个极小值。

填空题设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=____。

问答题设函数f(x)在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f′(x)≠1,证明在(0,1)内有且仅有一个x,使得f(x)=x。

填空题设函数f(x)在x=2的某邻域内可导,且f′(x)=ef(x),f(2)=1,则f‴(2)=____。

单选题设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=(  )。A1/5B1/7C-1/7D-1/5

单选题设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=(  )。A1B-1C1/7D-1/7

问答题设函数f(x)在[0,1]上二阶可导,且f(0)=f(1)=0,证明:必∃ξ∈(0,1)使ξ2f″(ξ)+4ξf′(ξ)+2f(ξ)=0。

判断题设偶函数f(x)在区间(-1,1)内具有二阶导数,且f″(0)=f′(0)+1,则f(0)为f(x)的一个极小值。A对B错

填空题设f(x)是可导函数,且f′(x)=sin2[sin(x+1)],f(0)=4,f(x)的反函数是x=φ(y),则φ′(4)=____。

单选题设f(x)在(-∞,+∞)内可导,且对任意x2>x1,都有f(x2)>f(x1),则正确的结论是(  )。A对任意x,f′(x)>0B对任意x,f′(x)≤0C函数-f(-x)单调增加D函数f(-x)单调增加

单选题设函数f(x)在区间[1,+∞)内二阶可导,且满足条件f(1)=f′(1)=0,x>1时f″(x)<0,则g(x)=f(x)/x在(1,+∞)内(  )。A曲线是向上凹的B曲线是向上凸的C单调减少D单调增加

单选题设函数f(x)={x2,x≤1;ax+b,x1},为使函数f(x)在x=1处连续且可导,则()。Aa=1,b=0Ba=0,b=1Ca=2,b=-1Da=-1,b=2

问答题设函数f(x),g(x)二次可导,满足函数方程f(x)g(x)=1,又f′(x)≠0,g′(x)≠0,则f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。

单选题设f(x)是可导函数,且f′(x)=sin2[sin(x+1)],f(0)=4,f(x)的反函数是x=φ(y),则φ′(4)=(  )。Asin2(sin1)B1/sin2(sin1)Csin(sin1)D1/sin(sin1)