名词解释题数学现实

名词解释题
数学现实

参考解析

解析: 暂无解析

相关考题:

“数学化“的过程是将现实的问题变成数学问题的一种简单化的过程。() 此题为判断题(对,错)。

数学的表现形式具有抽象性,但数学所反映的内容又是非常现实的。() 此题为判断题(对,错)。

数学现实原则,是指用数学知识来解决现实中的问题,() A、错误B、正确

从现实数学教育出发,荷兰数学教育家波利亚总结归纳出四条数学教学原则,即:数学现实、数学化、再创造和严谨性。() A、错误B、正确

数学化:学习者从现实的具体情境出发,经过归纳、抽象和概括等思维活动,寻找数学模型,得出数学结论的过程。() 此题为判断题(对,错)。

弗赖登塔尔关于现实数学教育中的数学化的两种形式是()。 A.实际问题转化为数学问题的数学化,即发现实际问题中的数学成分,并对这些成分作符号化处理。B.从符号到概念的数学化,即在数学范畴之内对已经符号化了的问题作进一步抽象化的处理。C.将数学问题转化为实际应用问题D.将数学概念还原成为现实生活实例

数学是研究现实世界数量关系和空间形式的科学。()

建构数学模型是指将现实世界中的原型概括形成数学模型的过程。() 此题为判断题(对,错)。

学生的数学学习过程是()。A、学生自主构建自己对数学知识的理解的过程B、“现实问题数学化—数学内部规律化—数学问题现实化”的过程C、学生参与数学活动的过程D、富有个性的、体现多样化学习需求的过程

数学美感是指在获得关于现实的数学知识而进行的各种活动中人所产生的情绪反映。()

举例说明如何发展儿童将数学运用到现实情境的能力?

对小学数学学科的再认识包含要形成“儿童数学观”、“现实数学观”以及()。 A、科学数学观B、抽象数学观C、形式数学观D、生活数学观

下列关于数学思想的说法中,错误的一项是( )A.数学思想是现实世界的空间形式和数量关系反映到人的意识之中并经过思维活动产生的结果B.数学思想是要在现实世界中找到具有直观意义的现实原型C.数学思想是对数学事实与数学理论概念、定理、公式、法则、方法的本质认识D.数学思想是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观念

为避免数学以后再出现类似问题,数学家对集合论的严格性以及数学中的概念构成法和数学论证方法进行逻辑上、哲学上的思考,其目的是力图为整个数学奠定一个坚实的基础。随着对数学基础的深入研究,在数学界产生了数学基础研究的三大学派()A抽象主义、现实主义、直觉主义B集合主义、抽象主义、形式主义C几何学派、抽象学派、现实学派D逻辑主义、直觉主义、形式主义

物理模型与数学模型的差别主要是()。A、物理模型描述的是现实系统,数学模型描述的是虚拟系统B、对现实系统的描述是用形象的方法还是用数学的方法C、物理模型是对现实系统的抽象,而数学模型不是D、数学模型是对现实系统的抽象,而物理模型不是

数学是对现实的具体。

举例说明高中数学内容在现实生活中的原型。

数学建模的思维过程包括()。A、对现实问题进行数学抽象B、构建数学模型C、用数学语言表达问题D、用数学知识和方法解决问题

数学是一门直接处理现实对象的科学。

数学思想方法,是指现实世界的()反映到人们的意识之中,经过()而产生的结果。数学思想方法是对数学事实和理论经过概括后产生的本质认识。

“纯数学的对象是现实世界的空间形式与数量关系.”给出这个关于数学本质的论述的人是().A、笛卡尔B、恩格斯C、康托D、罗素

数学现实

单选题密切数学与现实世界的联系,将数学知识应用于实践,不仅可以使学生感到“数学有用”、“数学有趣”、“数学合理”,而且可以使学生在生活中发现数学问题、提出数学问题,所体现的素质教育思想是()A挖掘数学的人文内涵B加强数学和生活的联系C加强数学与各学科之间的关系D挖掘数学的综合特征

判断题幼儿数学概念判断的源泉是幼儿现实生活。A对B错

填空题数学是研究现实世界()和()的一门科学。

填空题数学思想方法,是指现实世界的()反映到人们的意识之中,经过()而产生的结果。数学思想方法是对数学事实和理论经过概括后产生的本质认识。

单选题《义务教育数学课程标准(2011年版)》中规定的“应用意识”内涵是(  )。A意识利用数学的概念、原理和方法解释现实世界中的现象,解决现实世界中问题B认识到现实生活中蕴含着大量与数量和图形有关的问题C意识到应用数学知识DA和B

单选题为避免数学以后再出现类似问题,数学家对集合论的严格性以及数学中的概念构成法和数学论证方法进行逻辑上、哲学上的思考,其目的是力图为整个数学奠定一个坚实的基础。随着对数学基础的深入研究,在数学界产生了数学基础研究的三大学派()A抽象主义、现实主义、直觉主义B集合主义、抽象主义、形式主义C几何学派、抽象学派、现实学派D逻辑主义、直觉主义、形式主义