在F(x)中,f(x),g(x)是次数≢n的多项式,若在F中有n+1个不同的元素,c1,c2…使得f(ci)=g(ci),则f(x)=g(x)。
在F(x)中,f(x),g(x)是次数≢n的多项式,若在F中有n+1个不同的元素,c1,c2…使得f(ci)=g(ci),则f(x)=g(x)。
相关考题:
设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是( )。 A. [f(x)/g(x)]>[f(a)/g(b)] B. [f(x)/g(x)]>[f(b)/g(b)] C. f(x)g(x)>f(a)g(a) D. f(x)g(x)>f(b)g(b)
若p(x)是F(x)中次数大于0的不可约多项式,那么可以得到下列哪些结论?()A、只能有(p(x),f(x))=1B、只能有(p(x)C、(p(x),f(x))=1或者(p(x)D、(p(x),f(x))=1或者(p(x)
f(x)(系数为an…a0)是一个次数n0的本原多项式,q/p是有理根,那么可以得到f(x)=(px-q)g(x)成立,那么g(x)是什么多项式?()A、任意多项式B、非本原多项式C、本原多项式D、无理数多项式
设K是个数域,K[x]中的多项式f(x),g(x),若有f=g,则可以得到什么?()A、f(x)=g(f(x))B、g(x)=f(f(x))C、f(x)=g(x)D、g(x)=f(g(x))
在F[x]中,任一对多项式f(x)与g(x)都有最大公因式,且存在u(x),v(x)∈F(x),满足哪个等式?()A、u(x)f(x)v(x)g(x)=d(x)B、u(x)f(x)+v(x)g(x)=d(x)C、u(x)f(x)/v(x)g(x)=d(x)D、u(x)/f(x)+v(x)/g(x)=d(x)
单选题若p(x)是F(x)中次数大于0的不可约多项式,那么可以得到下列哪些结论?()A只能有(p(x),f(x))=1B只能有(p(x)C(p(x),f(x))=1或者(p(x)D(p(x),f(x))=1或者(p(x)
单选题f(x)(系数为an…a0)是一个次数n0的本原多项式,q/p是有理根,那么可以得到f(x)=(px-q)g(x)成立,那么g(x)是什么多项式?()A任意多项式B非本原多项式C本原多项式D无理数多项式
单选题在F[x]中,任一对多项式f(x)与g(x)都有最大公因式,且存在u(x),v(x)∈F(x),满足哪个等式?()Au(x)f(x)v(x)g(x)=d(x)Bu(x)f(x)+v(x)g(x)=d(x)Cu(x)f(x)/v(x)g(x)=d(x)Du(x)/f(x)+v(x)/g(x)=d(x)
单选题两个本原多项式g(x)和f(x),令h(x)=g(x)f(x)记作Cs,若h(x)不是本原多项式,则存在p当满足什么条件时使得p|Cs(s=0,1…)成立?()Ap是奇数Bp是偶数Cp是合数Dp是素数
单选题对于任意f(x)∈F[x],f(x)都可以整除哪个多项式?()Af(x+c)c为任意常数B0.0C任意g(x)∈F{x]D不存在这个多项式