判断题若f(x)与g(x)互素,则f(x)与g(x)的公因式都是零多项式。A对B错

判断题
若f(x)与g(x)互素,则f(x)与g(x)的公因式都是零多项式。
A

B


参考解析

解析: 暂无解析

相关考题:

若F(x)与G(x)均为f (x)在区间I上的原函数,则F(x)与G(x)相差一个_________.

设f(x),g(x)ϵP[x J. 若f(x)lg(x),g(x)lf(x),则 f(x)与g(x)的关系是( ).

设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是(  )。 A. [f(x)/g(x)]>[f(a)/g(b)] B. [f(x)/g(x)]>[f(b)/g(b)] C. f(x)g(x)>f(a)g(a) D. f(x)g(x)>f(b)g(b)

设函数f(x),g(x)是大于零的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当a<x<b时有( )《》( )A.f(x)g(b)>f(b)g(x)B.f(x)g(a)>f(a)g(x)C.f(x)g(x)>f(b)g(b)D.f(x)g(x)>f(a)g(a)

互素多项式的性质,(f(x),h(x))=1,(g(x),h(x))=1,则有(f(x)g(x),h(x))=1成立。

在F(x)中,f(x),g(x)是次数≤n的多项式,若在F中有n+1个不同的元素,c1,c2…使得f(ci)=g(ci),则f(x)=g(x)。

互素多项式的性质,若f(x)|g(x)h(x),且(f(x),g(x))=1,那么可以推出什么?()A、g(x)B、h(x)C、f(x)g(x)D、f(x)

若f(x)|g(x)h(x)且(f(x),g(x))=1则()。A、g(x)B、h(x)C、f(x)D、f(x)

互素多项式的性质,若f(x)|h(x),g(x)|h(x),且(f(x),g(x))=1,那么可以推出什么?()A、f(x)g(x)B、h(x)C、h(x)D、g(x)

若f(x)与g(x)互素,则f(x)与g(x)的公因式都是零多项式。

非零多项式g(x),f(x)一定存在最大公因式。

非零多项式g(x),f(x)一定存在最大公因式,且是唯一的,只有一个。

若f′(x)=g′(x),则下列哪个式子成立()?A、f(x)=g(x)B、f(x)g(x)C、f(x)D、f(x)=g(x)+cc为任意常数

F[x]中,f(x)与g(x)互素的充要条件是(f(x),g(x))=1。

设K是个数域,K[x]中的多项式f(x),g(x),若有f=g,则可以得到什么?()A、f(x)=g(f(x))B、g(x)=f(f(x))C、f(x)=g(x)D、g(x)=f(g(x))

设g(x),f(x)∈F[x],存在d(x)∈F[x],有d(x)|f(x)且d(x)|g(x),那么称d(x)为f(x),g(x)的什么?()A、公因式B、最大公因式C、最小公因式D、共用函数

在数域K中多项式f(x)与g(x)若有f=g,则f(x)=g(x)。

判断题非零多项式g(x),f(x)一定存在最大公因式,且是唯一的,只有一个。A对B错

判断题非零多项式g(x),f(x)一定存在最大公因式。A对B错

单选题在F[x]中,任一对多项式f(x)与g(x)都有最大公因式,且存在u(x),v(x)∈F(x),满足哪个等式?()Au(x)f(x)v(x)g(x)=d(x)Bu(x)f(x)+v(x)g(x)=d(x)Cu(x)f(x)/v(x)g(x)=d(x)Du(x)/f(x)+v(x)/g(x)=d(x)

单选题设g(x),f(x)∈F[x],存在d(x)∈F[x],有d(x)|f(x)且d(x)|g(x),那么称d(x)为f(x),g(x)的什么?()A公因式B最大公因式C最小公因式D共用函数

判断题F[x]中,f(x)与g(x)互素的充要条件是(f(x),g(x))=1。A对B错

判断题互素多项式的性质,(f(x),h(x))=1,(g(x),h(x))=1,则有(f(x)g(x),h(x))=1成立。A对B错

单选题设K是个数域,K[x]中的多项式f(x),g(x),若有f=g,则可以得到什么?()Af(x)=g(f(x))Bg(x)=f(f(x))Cf(x)=g(x)Dg(x)=f(g(x))

判断题在数域K中多项式f(x)与g(x)若有f=g,则f(x)=g(x)。A对B错

单选题互素多项式的性质,若f(x)|g(x)h(x),且(f(x),g(x))=1,那么可以推出什么?()Ag(x)Bh(x)Cf(x)g(x)Df(x)

单选题互素多项式的性质,若f(x)|h(x),g(x)|h(x),且(f(x),g(x))=1,那么可以推出什么?()Af(x)g(x)Bh(x)Ch(x)Dg(x)