问答题设f(x)在[a,b]上连续,在(a,b)内可微,若a≥0,证明在(a,b)内存在三个数x1、x2、x3,使f′(x1)=(b+a)f′(x2)/(2x2)=(b2+ab+a2)f′(x3)/(3x32)。

问答题
设f(x)在[a,b]上连续,在(a,b)内可微,若a≥0,证明在(a,b)内存在三个数x1、x2、x3,使f′(x1)=(b+a)f′(x2)/(2x2)=(b2+ab+a2)f′(x3)/(3x32)。

参考解析

解析: 暂无解析

相关考题:

已知x1(t)和x2(t)的傅里叶变换分别为X1(f)和X2(f),则卷积x1(t)*x2(t)的傅里叶变换为()。 A、X1(f)X2(f)B、X1(f)*X2(f)C、X1(-f)X2(-f)D、X1(-f)*X2(-f)

对于三端式振荡器,三极管各电极问接电抗元件X(电容或电感),C、E电极问接电抗元件X1,B.E电极间接X2.C.B电极问接X3,满足振荡的原则是()。 A、X2与X3性质相同,X2、X3与X1性质相反B、X1与X2、X3性质均相同C、X1与X3性质相同,X1、X3与X2性质相反D、X1与X2性质相同,X1、X2与X3性质相反

一个关系模式为Y(X1,X2,X3,X4),假定该关系存在如下函数依赖:(X1,X2)→X3、X2→x4,则该关系的码为______。A.X1B.X2C.(X1,X2)D.(X1,X2,X3,X4)

已知函数f(x)=(a+1)lnx+ax2+1.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)设a≤-2,证明:对任意x2,x2 (0,+∞),|f(x1)-f(x2)|≥4|x1-x2|.

设二次型f(x1,x2,x3)=(a>0)的秩为2.(1)求a;(2)用正交变换法化二次型为标准形.

已知二次型的秩为2.(1)求a.(2)求作正交变换X=QY,把f(x1,x2,x3)化为标准形.(3)求方程f(x1,x2,x3)=0的解

二次型, (1)求f(x1,x2,x3)的矩阵的特征值. (2)设f(x1,x2,x3)的规范形为. 求a

方程组的解为( )。A、x1=-18,x2=0,x3=0B、x1=0,x2=0,x3=3C、x1=2,x2=1,x3=3D、x1=0,x2=6,x3=0

二元多项式f(x1,x2),如果将x1,x2对换后,有f(x1,x2=f(x2,x1)则称f(x1,x2)为二元对称多项式。下列是二元对称多项式的是( )。A.B.C.D.

设二次型f(x1,x2,x3)在正交变换为x=py下的标准形为若Q=(e1-e3,e2),则f(x1,x2,x3)在正交变换x=Qy下的标准型为( )。A.B.C.D.

设f(x)处处连续,且在x=x1处有f'(x1)=0,在x=x2处不可导,那么( )。A.x=x1及x=x2都必不是f(x)的极值点B.只有x=x1是f(x)的极值点C.x=x1及x=x2都有可能是f(x)的极值点D.只有x=x2是f(x)的极值点

海岸电台海上移动业务识别码群呼码的组成是()A、MID X1 X2 X3 X4 X5 X6B、0MID X1 X2 X3 X4 X5C、00MID X1 X2 X3 X4D、00NID X1 X2 X3 X4 X5

设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为λ=3的泊松分布,记Y=X1-2X2+3X3。则DY=()。

映射f:A→B,若A中任意两个不同元素x1≠x2有f(x1)≠f(x2),则f是()。A、单射B、满射C、双射D、反射

设f(x)处处连续,且在x=x1处有f'(x1)=0,在x=x2处不可导,那么()。A、x=x1及x=x2都必不是f(x)的极值点B、只有x=x1是f(x)的极值点C、x=x1及x=x2都有可能是f(x)的极值点D、只有x=x2是f(x)的极值点

单选题设f(x)处处连续,且在x=x1处有f'(x1)=0,在x=x2处不可导,那么()。Ax=x1及x=x2都必不是f(x)的极值点B只有x=x1是f(x)的极值点Cx=x1及x=x2都有可能是f(x)的极值点D只有x=x2是f(x)的极值点

问答题设f(x)在[0,π]上连续,在(0,π)内可导,证明:必∃ξ∈(0,π),使f′(ξ)+3f(ξ)cotξ=0。

单选题若函数f(x)在区间(a,b)内可导,x1和x2是区间(a,b)内任意两点(x1<x2),则至少存在一点ξ,使(  )Af(b)-f(a)=f′(ξ)(b-a)(a<ξ<b)Bf(b)-f(x1)=f′(ξ)(b-x1)(x1<ξ<b)Cf(x2)-f(x1)=f′(ξ)(x2-x1)(x1<ξ<x2)Df(x2)-f(a)=f′(ξ)(x2-a)(a<ξ<x2)

单选题船舶电台海上移动业务识别码单呼码的组成是()AMID X1 X2 X3 X4 X5 X6B0MID X1 X2 X3 X4 X5C00MID X1 X2 X3 X4D00NID X1 X2 X3 X4 X5

问答题设f(x)在(a,b)内二阶可导,且f″(x)≥0,证明:对于(a,b)内任意两点x1、x2及0≤t≤1,有f[(1-t)x1+tx2]≤(1-t)f(x1)+tf(x2)。

单选题设f(x)在(-∞,+∞)内可导,且对任意x2>x1,都有f(x2)>f(x1),则正确的结论是(  )。A对任意x,f′(x)>0B对任意x,f′(x)≤0C函数-f(-x)单调增加D函数f(-x)单调增加

单选题设函数f(x)={x2,x≤1;ax+b,x1},为使函数f(x)在x=1处连续且可导,则()。Aa=1,b=0Ba=0,b=1Ca=2,b=-1Da=-1,b=2

单选题A X1},{X2},{X3 X4}B {X1 X2},{x1 X3}C {X1 X2 X3}D {X3 X4},{X1 X3 X4}

问答题设函数f(x)在(a,b)内连续,a<x1<x2<…<xn<b,证明:必∃ξ∈(a,b),使f(ξ)=[f(x1)+f(x2)+…+f(xn)]/n。

单选题映射f:A→B,若A中任意两个不同元素x1≠x2有f(x1)≠f(x2),则f是()。A单射B满射C双射D反射

问答题设f(x)在[a,b]上连续(a>0),在(a,b)内可导,证明:必∃ξ∈(a,b),使[f(a)-f(ξ)]/(ξ2-b2)=f′(ξ)/(2ξ)。

问答题设f(x),f′(x)在[a,b]上连续,f″(x)在(a,b)内存在,f(a)=f(b)=0,且存在c∈(a,b)使f(c)>0。证明:必∃ξ∈(a,b)使f″(ξ)<0。