若f(x)为可导函数,且已知f(0) = 0,f'(0) = 2,则的值为()。A. 0 B. 1 C. 2 D.不存在
若f(x)为可导函数,且已知f(0) = 0,f'(0) = 2,则的值为()。
A. 0 B. 1 C. 2 D.不存在
A. 0 B. 1 C. 2 D.不存在
参考解析
解析:提示:利用积分上限函数求导和洛必达法则。
相关考题:
以下结论正确的是()。 A、若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B、函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C、若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D、若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.
已知函数f(x,y)在点(0,0)的某个邻域内连续,且 ,则A.点(0,0)不是f(x,y)的极值B.点(0,0)是f(x,y)的极大值点C.点(0,0)是f(x,y)的极小值点D.根据所给条件无法判断点(0,0)是否为f(x,y)的极值点
设函数f(x)在x=a的某个邻域内连续,且f(a)为其极大值,则存在δ>0,当x∈(a-δ,a+δ)时,必有( )。A.(x-a)[f(x)-f(a)]≥0B.(x-a)[f(x)-f(a)]≤0C.D.
设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )A.f(a)=0且f′(a)=0B.f(a)=0且f′(a)≠0C.f(a)>0且f′(a)>D.f(a)<0且f′(a)<
下列命题正确的是()A.函数f(x)的导数不存在的点,一定不是f(x)的极值点B.若x0为函数f(x)的驻点,则x0必为f(x)的极值点C.若函数f(x)在点x0处有极值,且f'(x0)存在,则必有f'(x0)=0D.若函数f(x)在点x0处连续,则f'(x0)一定存在
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.
下列命题中正确的为()A.若xo为f(x)的极值点,则必有,f'(xo)=0B.若f'(xo)=0,则点xo必为f(x)的极值点C.若f'(xo)≠0,则点xo必定不为f(x)的极值点D.若f(x)在点xo处可导,且点xo为f(x)的极值点,则必有f'(xo)=0
单选题设函数f(x)满足关系式f″(x)+[f′(x)]2=x,且f′(0)=0,则( )。Af(0)是f(x)的极大值Bf(0)是f(x)的极小值C点(0,f(0))是曲线y=f(x)的拐点Df(0)不是f(x)的极值,点(0,f(0))也不是曲线y=f(x)的拐点
单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为( )。Af″(x)+f(x)=0Bf′(x)+f(x)=0Cf″(x)+f′(x)=0Df″(x)+f′(x)+f(x)=0
单选题下列说法中正确的是( )。[2014年真题]A若f′(x0)=0,则f(x0)必须是f(x)的极值B若f(x0)是f(x)的极值,则f(x)在点x0处可导,且f′(x0)=0C若f(x0)在点x0处可导,则f′(x0)=0是f(x)在x0取得极值的必要条件D若f(x0)在点x0处可导,则f′(x0)=0是f(x)在x0取得极值的充分条件
单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为( )。Af′(x)+f(x)=0Bf′(x)-f(x)=0Cf″(x)+f(x)=0Df″(x)-f(x)=0