已知三维列向量αβ满足αTβ=3,设3阶矩阵A=βαT,则:A. β是A的属于特征值0的特征向量B. α是A的属于特征值0的特征向量C. β是A的属于特征值3的特征向量D. α是A的属于特征值3的特征向量

已知三维列向量αβ满足αTβ=3,设3阶矩阵A=βαT,则:

A. β是A的属于特征值0的特征向量
B. α是A的属于特征值0的特征向量
C. β是A的属于特征值3的特征向量
D. α是A的属于特征值3的特征向量

参考解析

解析: 通过矩阵的特征值、特征向量的定义判定。只要满足式子Ax=λx,向量x即为矩阵A对应特征值λ的特征向量。
再利用题目给出的条件:
αTβ=3 ①
A=βαT ②
将等式②两边均乘β,得辱A*β=βαT*β,变形Aβ=β(αTβ),代入式①得Aβ=β*3,故Aβ=3*β成立。

相关考题:

设A是三阶实对称矩阵,若对任意的三维列向量X,有X^TAX=0,则().A.|A|=0B.|A|>0C.|A|D.以上都不对

设矩阵A,B,C均为n阶矩阵,若AB=C,且B可逆,则( )A.矩阵C的行向量组与矩阵A的行向量组等价B.矩阵C的列向量组与矩阵A的列向量组等价C.矩阵C的行向量组与矩阵B的行向量组等价D.矩阵C的行向量组与矩阵B的列向量组等价

设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知a是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:A. Pa B. P-1A C. PTa D.(P-1)Ta

已知三维列向量αβ满足αTβ=3,设3阶矩阵A=βαT,则:A. β是A的属于特征值0的特征向量B. α是A的属于特征值0的特征向量C. β是A的属于特征值3的特征向量D. α是A的属于特征值3的特征向量

设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:(A) Pα (B) P-1α (C) PTa (D) P(-1)Ta

设A、B都是n阶可逆矩阵,则A. (-3)n A B -1B. -3 A T B TC. -3 A T B -1D. (-3)2n A B -1

设A为n阶矩阵,证明:r(A)=1的充分必要条件是存在n维非零列向量α,β使得A=αβT.

设α,β为三维非零列向量,(α,β)=3,A=αβ^T,则A的特征值为_______.

设B≠O为三阶矩阵,且矩阵B的每个列向量为方程组的解,则k=_______,|B|=_______.

设矩阵,α1,α2,α3为线性无关的3维列向量组,则向量组Aα1,Aα2,Aα3的秩为_________.

设α,β为三维列向量,矩阵A=αα^T+ββ^T,其中α^T,β^T分别是α,β的转置.证明:  (Ⅰ)秩r(A)≤2;  (Ⅱ)若α,β线性相关,则秩r(A)

设A,B,C均为n阶矩阵,若AB=C,且B可逆,则 A.A矩阵C的行向量组与矩阵A的行向量组等价B.矩阵C的列向量组与矩阵A的列向量组等价C.矩阵C的行向量组与矩阵B的行向量组等价D.矩阵C的列向量组与矩阵B的列向量组等价

设α为三维单位列向量,E为三阶单位矩阵,则矩阵E-αα^T的秩为________.

若三维列向量α,β满足α^Tβ=2,其中α为α的转置,则矩阵βα^T的非零特征值为_____________.

设A为3阶矩阵,a1,a2为A的分别属于特征值-1,1的特征向量,向量a3满足

已知三维列向量a,β满足aTβ,设3阶矩阵A=βaT,则:A. β是A的属于特征值0的特征向量B. a是A的属于特征值0的特征向量C. β是A的属于特征值3的特征向量D. a是A的属于特征值3的特征向量

设B是三阶非零矩阵,已知B的每一列都是方程组的解,则t等于A.0B.2C.1D.-1

设P为三阶方阵,将P的第一列与第二列交换得到T,再把T的第二列加到第三列得到 R.则满足PQ=R的矩阵Q是( )。

设B是3阶非零矩阵,已知B的每一列都是方程组的解,则t等于( )。 A. 0 B. 2 C. -1 D. 1

已知3维列向量α,β满足αTβ=3,设3阶矩阵A=βαT,则()。A、β是A的属于特征值0的特征向量B、α是A的属于特征值0的特征向量C、β是A的属于特征值3的特征向量D、α是A的属于特征值3的特征向量

设列向量p=[1,-1,2]T是3阶方阵相应特征值λ的特征向量,则特征值λ等于().A、3B、5C、7D、不能确定

填空题设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=____。

单选题设n维行向量α=(1/2,0,…,0,1/2),矩阵A=E-αTα,B=E+2αTα,其中E为n阶单位矩阵,则AB等于(  )。AOB-ECEDE+αTα

单选题已知3维列向量α,β满足αTβ=3,设3阶矩阵A=βαT,则()。Aβ是A的属于特征值0的特征向量Bα是A的属于特征值0的特征向量Cβ是A的属于特征值3的特征向量Dα是A的属于特征值3的特征向量

问答题设A=E-α(→)α(→)T,其中E是n阶单位矩阵,α(→)是n维非零列向量,α(→)T是α(→)的转置。证明:  (1)A2=A的充要条件是α(→)Tα(→)=1;  (2)当α(→)Tα(→)=1时,A是不可逆矩阵。

单选题设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=(  )。A4B2C-1D1

单选题(2009)设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:()APαBP-1αCPTαD(P-1)Tα

单选题设列向量p=[1,-1,2]T是3阶方阵相应特征值λ的特征向量,则特征值λ等于().A3B5C7D不能确定