设 a, b 为非零向量, 下列命题正确的是( )。A. a×b 垂直于 a B. a×b 平行于 aC. a·b 平行于 a D. a·b 垂直于 a

设 a, b 为非零向量, 下列命题正确的是( )。

A. a×b 垂直于 a
B. a×b 平行于 a
C. a·b 平行于 a
D. a·b 垂直于 a

参考解析

解析:两个向量的数量积也称“点乘”,结果是一个数;向量积也称“叉乘”,结果是一个向量,其方向满足右手定则,垂直于原向量的平面。a×b为向量积,方向与a,b向量垂直,所以A项正确,B项错误;a·b为数量积,结果是一个数,无方向可言,所以C项和D项错误。故本题选A。

相关考题:

设α,β为四维非零列向量,且α⊥β,令A=αβ^T,则A的线性无关特征向量个数为().A.1B.2C.3D.4

设向量组Ⅰ可由向量组Ⅱ:线性表示,下列命题正确的是( )A.若向量组Ⅰ线性无关,则r≤sB.若向量组Ⅰ线性相关,则r大于sC.若向量组Ⅱ线性无关,则r≤sD.若向量组Ⅱ线性相关,则r小于s

设A是m×n非零矩阵,B是n×l非零矩阵,满足AB=0,以下选项中不一定成立的是:A. A的行向量组线性相关B. A的列向量组线性相关C. B的行向量组线性相关D. r(A)+r(B)≤n

设A,B为n阶矩阵,考虑以下命题:①若A,B为等价矩阵,则A,B的行向量组等价②若行列式.,则A,B为等价矩阵③若与都只有零解,则A,B为等价矩阵④若A,B为相似矩阵,则与的解空间的维数相同以上命题中正确的是( ).A.①③B.②④C.②③D.③④

设a,b为非零向量,且满足(a+3b)⊥(7a-5b),(a-4b)⊥(7a-2b),则a与b的夹角θ=( )。A.0B.C.D.

设a,b,c为非零向量,则与a不垂直的向量是( )。A.(a·c)b-(a·b)cB.C.a×bD.a+(a×b)×a

设α、β均为非零向量,则下面结论正确的是(  )。

设A是mxn的非零矩阵,B是nxl非零矩阵,满足AB=0,以下选项中不一定成立的是:A. A的行向量组线性相关 B. A的列向量组线性相关C.B的行向量组线性相关 D.r(A)+r(B)≤n

证明的充分必要条件是存在非零列向量a及非零行向量使.

设η为非零向量,A=,η为方程组AX=O的解,则a=_______,方程组的通解为_______.

设A为n阶矩阵,证明:r(A)=1的充分必要条件是存在n维非零列向量α,β使得A=αβT.

设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…,αn线性无关,并举例说明逆命题不成立.

设α,β为三维非零列向量,(α,β)=3,A=αβ^T,则A的特征值为_______.

设非零n维列向量α,β正交且A=αβT.证明:A不可以相似对角化.

设A是三阶实对称矩阵,r(A)=1,A^2-3A=O,设(1,1,-1)t为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A.

设α1,α2,…,αn为n个线性无关的n维列向量,且与向量β正交.证明:向量β为零向量.

设A为二阶矩阵,α1,α2为线性无关的二维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为________.

设A为n阶方阵,rank(A)=3A.任意3个行向量都是极大线性无关组B.至少有3个非零行向量C.必有4个行向量线性无关D.每个行向量可由其余n- 1个行向量线性表示

设向量组I:α1α2αr…,可由向量组Ⅱβ1,β2,…βs:线性表示,下列命题正确的是( )。A.若向量组I线性无关.则r≤SB.若向量组I线性相关,则r>sC.若向量组Ⅱ线性无关,则r≤sD.若向量组Ⅱ线性相关,则r>s

设a,b是两个非零向量,则下面说法正确的是( )。A.B.C.D.

设a,b为非零向量,下列命题正确的是( )(易错)(1)a×b垂直于a;(2)a×b垂直于b;(3)a×b平行于a;(4)a×b平行于b。正确的个数是( )A.0个B.1个C.2个D.3个

设a、b、c均为非零向量,则与a不垂直的向量是:()A、(a·C.b-(a·B.cB、B.b-(a·b/a·aC、a×bD、D.a+(a××a

设a,b是两个非零向量,则下面说法正确的是()。A、若B、若a⊥b,则C、若D、若存在实数λ,使得a=λb,则

单选题设a、b、c均为非零向量,则与a不垂直的向量是:()A(a·C.b-(a·B.cBB.b-(a·b/a·aCa×bDD.a+(a××a

单选题设A是m×n的非零矩阵,B是m×1非零矩阵,满足AB=0,以下选项中不一定成立的是:()AA的行向量组线性相关BA的列向量组线性相关CB的行向量组线性相关Dr(A)+r(B)≤n

单选题设a,b是两个非零向量,则下面说法正确的是()。A若B若a⊥b,则C若D若存在实数λ,使得a=λb,则

单选题设a(→),b(→)为非零向量,且a(→)⊥b(→),则必有(  )。A|a(→)+b(→)|=|a(→)|+|b(→)|B|a(→)+b(→)|=|a(→)|-|b(→)|C|a(→)+b(→)|=|a(→)-b(→)|Da(→)+b(→)=a(→)-b(→)