证明的充分必要条件是存在非零列向量a及非零行向量使.

证明的充分必要条件是存在非零列向量a及非零行向量使.


参考解析

解析:

相关考题:

线性方程组Ax=o只有零解的充分必要条件是() A、A的行向量组线性无关B、A的行向量组线性相关C、A的列向量组线性无关D、A的列向量组线性相关

设A为m×n阶矩阵,则齐次线性方程组AX=0只有零解的充分必要条件是(64)。A.A的列向量组线性无关B.A的列向量组线性相关C.A的行向量组线性无关D.A的行向量组线性相关A.A的列向量组线性无关B.A的列向量组线性相关C.A的行向量组线性无关D.A的行向量组线性相关

设A,B为满足AB=0的任意两个非零矩阵,则必有(56)。A.A的列向量组线性相关,B的行向量组线性相关B.A的列向量组线性相关,B的列向量组线性相关C.A的行向量组线性相关,B的行向量组线性相关D.A的列向量组线性相关,B的列向量组线性相关

设A是m×n非零矩阵,B是n×l非零矩阵,满足AB=0,以下选项中不一定成立的是:A. A的行向量组线性相关B. A的列向量组线性相关C. B的行向量组线性相关D. r(A)+r(B)≤n

设a,b均为向量,下列命题中错误的是( ).A.a∥b的充分必要条件是存在实数λ,使b=λaB.a∥b的充分必要条件是a×b=0C.a⊥b的充分必要条件是a·b=0D.

设a1,a2,a3均为3维向量,则对任意常数k,l,向量组线性无关是向量组a1,a2,a3线性无关的( )A.必要非充分条件B.充分非必要条件C.充分必要条件D.既非充分也非必要条件

设A为n阶矩阵,证明:r(A)=1的充分必要条件是存在n维非零列向量α,β使得A=αβT.

设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵.其中A*是矩阵A的伴随矩阵,E是n阶单位矩阵. (1)计算并化简PQ; (2)证明:矩阵Q可逆的充分必要条件是.

设A为s×n矩阵且A的行向量组线性无关,K为r×s矩阵。证明:B=KA行无关的充分必要条件是R(K)=r

设α1,α2,α3均为三维向量,则对任意常数k,l,向量组α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的 A.A必要非充分条件B.充分非必要条件C.充分必要条件D.既非充分也非必要条件

设A为n阶方阵,rank(A)=3A.任意3个行向量都是极大线性无关组B.至少有3个非零行向量C.必有4个行向量线性无关D.每个行向量可由其余n- 1个行向量线性表示

设a,b为非零向量,λ∈R+,满足|a+b|=λ|a-b|,则“λ>1”是“a,b的夹角为锐角”的(  )A、充分不必要条件B、必要不充分条件C、充分必要条件D、既不充分也不必要条件

在线性规划问题的典式中,基变量的系数列向量为()A、单位阵B、非单位阵C、单位行向量D、单位列向量

设a,b均为向量,下列命题中错误的是().A、a∥b的充分必要条件是存在实数λ,使b=λaB、a∥b的充分必要条件是a×b=0C、a⊥b的充分必要条件是a·b=0D、D.a⊥b的充分必要条件是(a+·(a-B.=

单选题设A是m×n的非零矩阵,B是m×1非零矩阵,满足AB=0,以下选项中不一定成立的是:()AA的行向量组线性相关BA的列向量组线性相关CB的行向量组线性相关Dr(A)+r(B)≤n

单选题设向量组Ⅰ:α(→)1,α(→)2,…,α(→)m,其秩为r;向量组Ⅱ:α(→)1,α(→)2,…, α(→)m,β(→),其秩为s,则r=s是向量组Ⅰ与向量组Ⅱ等价的(  )。A充分非必要条件B必要非充分条件C充分必要条件D既非充分也非必要条件

单选题A是n阶方阵,其秩r<n,则在A的n个行向量中(  ).A必有r个行向量线性无关B任意r个行向量线性无关C任意r个行向量都构成极大线性无关向量组D任意一个行向量都可由其他任意r个行向量线性表出

单选题设A为m×n矩阵,齐次线性方程组AX(→)=0(→)仅有零解的充分条件是(  )。AA的列向量组线性无关BA的列向量组线性相关CA的行向量组线性无关DA的行向量组线性相关

问答题证明:  (1)若α(→)1,α(→)2,…,α(→)r是A的属于特征值λ的特征向量,则α(→)1,α(→)2,…,α(→)r的任一个非零线性组合也是A的属于λ的特征向量。  (2)矩阵可逆的充分必要条件是它的特征值都不为0。

单选题设向量组I:α(→)1,α(→)2,…,α(→)m,其秩为r;向量组II:α(→)1,α(→)2,…,α(→)m,β(→),其秩为s,则r=s是向量组I与向量组II等价的(  )。A充分非必要条件B必要非充分条件C充分必要条件D既非充分也非必要条件

单选题在线性规划问题的典式中,基变量的系数列向量为()A单位阵B非单位阵C单位行向量D单位列向量

单选题设A,B为满足AB=0(→)的任意两个非零矩阵,则必有(  )。AA的列向量组线性相关,B的行向量组线性相关BA的列向量组线性相关,B的列向量组线性相关CA的行向量组线性相关,B的行向量组线性相关DA的行向量组线性相关,B的列向量组线性相关