下列函数在x=0处可导的是( )。

下列函数在x=0处可导的是( )。


参考解析

解析:

相关考题:

下列命题中正确的是()。 A.连续函数必可导B.可导函数必连续C.函数可导的充要条件是函数连续D.存在极限的函数连续

设函数y=f(x)在(0,+∞)内有界且可导,则( )。A.B.C.D.

设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )A.f(a)=0且f′(a)=0B.f(a)=0且f′(a)≠0C.f(a)>0且f′(a)>D.f(a)<0且f′(a)<

函数在x=0处( )。A.连续,且可导B.连续,不可导C.不连续D.不仅可导,导数也连续

已知函数f(x)在x=1处可导,则f'(1)等于:A. 2 B. 1

设函数若f(x)在x=0处可导,则a的值是:A. 1 B. 2 C. 0 D. -1

函数y=x+x x ,在x=0 处应:A.连续且可导 B.连续但不可导 C.不连续 D.以上均不对

下列函数中在x=0处可导的是

下列函数中,在x=0处不可导的是()

函数y=|x|+1在x=0处()A.无定义B.不连续C.连续但是不可导D.可导

设f(x)是连续函数,  (Ⅰ)利用定义证明函数可导,且F’(x)=f(x);  (Ⅱ)当f(x)是以2为周期的周期函数时,证明函数也是以2为周期的周期函数.

(Ⅰ)设函数u(x),ν(x)可导,利用导数定义证明[u(x)ν(x)]’=u’(x)ν(x)+u(x)ν’(x);  (Ⅱ)设函数u1(x),u2(x),…,un(x)可导,f(x)=u1(x)u2(x)…un(x),写出f(x)的求导公式.

设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在x=1处取得极值g(1)=1.求

(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.

下列命题中,正确的是( ).A.单调函数的导函数必定为单调函数B.设f(x)为单调函数,则f(x)也为单调函数C.设f(x)在(a,b)内只有一个驻点xo,则此xo必为f(x)的极值点D.设f(x)在(a,b)内可导且只有一个极值点xo,f(xo)=0

设f(x)为[a,b]上的连续函数,则下列命题不正确的是( )。A.f(x)在[a,b]上有最大值B.f(x)在[a,b]上一致连续C.f(x)在[a,b]上可积D.f(x)在[a,b]上可导

设其中g(x)是有界函数,则f(x)在x=0点( )。A、极限不存在B、极限存在但不连续C、连续、但不可导D、可导

下列函数在χ=0处可导的是( )。

下列函数在x=0处可导的是( )。A.y=|x|B.C.D.y=|sinx|

已知f(x)是二阶可导的函数,

已知函数f(x)在区间(0,1)内可导,则以下结论正确的是( )。

函数y=x+x|x|,在x=0处应:()A、连续且可导B、连续但不可导C、不连续D、以上均不对

设函数f(x)=丨x丨,则函数在点x=0处()A、连续且可导B、连续且可微C、连续不可导D、不可连续不可微

单选题设函数f(x)=丨x丨,则函数在点x=0处()A连续且可导B连续且可微C连续不可导D不可连续不可微

单选题函数y=x+x|x|,在x=0处应:()A连续且可导B连续但不可导C不连续D以上均不对

填空题设f(x)是可导函数,且f′(x)=sin2[sin(x+1)],f(0)=4,f(x)的反函数是x=φ(y),则φ′(4)=____。

单选题设P(x)是在区间[α,b]上的y=f(x)川的分段线性插值函数,以下条件中不是P(x)必须满足的条件为( )。AP(x)在[a,b]上连续BP(Xk)=YkCP(x)在[α,b]上可导DP(x)在各子区间上是线性函数