判断题在F(x)中,f(x),g(x)是次数≤n的多项式,若在F中有n+1个不同的元素,c1,c2…使得f(ci)=g(ci),则f(x)=g(x)。A对B错
判断题
在F(x)中,f(x),g(x)是次数≤n的多项式,若在F中有n+1个不同的元素,c1,c2…使得f(ci)=g(ci),则f(x)=g(x)。
A
对
B
错
参考解析
解析:
暂无解析
相关考题:
设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是( )。 A. [f(x)/g(x)]>[f(a)/g(b)] B. [f(x)/g(x)]>[f(b)/g(b)] C. f(x)g(x)>f(a)g(a) D. f(x)g(x)>f(b)g(b)
若在区间(a,b)内, f ' (x) = g ' (x),则下列等式中错误的是:(A) f (x) = cg(x) (B) f (x) = g(x) + c(C)∫ d f (x) = ∫ dg(x) (D)df (x) = dg(x)
设函数f(x),g(x)是大于零的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当a<x<b时有( )《》( )A.f(x)g(b)>f(b)g(x)B.f(x)g(a)>f(a)g(x)C.f(x)g(x)>f(b)g(b)D.f(x)g(x)>f(a)g(a)
下列命题中,正确的是().A、若在区间(a,B.内有f(x)g(x),则f’(x)g’(x),x∈(a,B.B、若在区间(a,B.内有f’(x)g’(x),则f(x)g(x),x∈(a,B.C、C.若f’(x)在(a,内单调,则f(x)在(a,B.内也单调D、D.若在区间(a,B.内有f’(x)g’(x),且f=gA.,则f(x)g(x),x∈(a,B.
f(x)(系数为an…a0)是一个次数n0的本原多项式,q/p是有理根,那么可以得到f(x)=(px-q)g(x)成立,那么g(x)是什么多项式?()A、任意多项式B、非本原多项式C、本原多项式D、无理数多项式
设K是个数域,K[x]中的多项式f(x),g(x),若有f=g,则可以得到什么?()A、f(x)=g(f(x))B、g(x)=f(f(x))C、f(x)=g(x)D、g(x)=f(g(x))
在F[x]中,任一对多项式f(x)与g(x)都有最大公因式,且存在u(x),v(x)∈F(x),满足哪个等式?()A、u(x)f(x)v(x)g(x)=d(x)B、u(x)f(x)+v(x)g(x)=d(x)C、u(x)f(x)/v(x)g(x)=d(x)D、u(x)/f(x)+v(x)/g(x)=d(x)
单选题f(x)(系数为an…a0)是一个次数n0的本原多项式,q/p是有理根,那么可以得到f(x)=(px-q)g(x)成立,那么g(x)是什么多项式?()A任意多项式B非本原多项式C本原多项式D无理数多项式
单选题在F[x]中,任一对多项式f(x)与g(x)都有最大公因式,且存在u(x),v(x)∈F(x),满足哪个等式?()Au(x)f(x)v(x)g(x)=d(x)Bu(x)f(x)+v(x)g(x)=d(x)Cu(x)f(x)/v(x)g(x)=d(x)Du(x)/f(x)+v(x)/g(x)=d(x)
单选题设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是( )。[2018年真题]Af(x)/g(x)>f(a)/g(b)Bf(x)/g(x)>f(b)/g(b)Cf(x)g(x)>f(a)g(a)Df(x)g(x)>f(b)g(b)
单选题两个本原多项式g(x)和f(x),令h(x)=g(x)f(x)记作Cs,若h(x)不是本原多项式,则存在p当满足什么条件时使得p|Cs(s=0,1…)成立?()Ap是奇数Bp是偶数Cp是合数Dp是素数
单选题设f(x)具有任意阶导数,且f′(x)=[f(x)]2,则f(n)(x)=( )。An[f(x)]n+1Bn![f(x)]n+1C(n+1)[f(x)]n+1D(n+1)![f(x)]n+1
单选题下列命题中,正确的是().A若在区间(a,B.内有f(x)g(x),则f’(x)g’(x),x∈(a,B.B若在区间(a,B.内有f’(x)g’(x),则f(x)g(x),x∈(a,B.CC.若f’(x)在(a,内单调,则f(x)在(a,B.内也单调DD.若在区间(a,B.内有f’(x)g’(x),且f=gA.,则f(x)g(x),x∈(a,B.